帳號:guest(18.223.211.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃俊維
作者(外文):Huang, Jyun-Wei
論文名稱(中文):具可快速更換欠驅動自適應結構與吸附物件高度可調之多功能創新機器人夾爪設計與開發
論文名稱(外文):Enabling Versatile Grasping with Novel Robotic Gripper through Design and Integration of Rapid-Changeable Underactuated Adaptive Structures and Height-Adjustable Suction System
指導教授(中文):張禎元
指導教授(外文):Chang, Jen-Yuan
口試委員(中文):詹子奇
李昀儒
劉俊葳
口試委員(外文):Chan, Tzu-Chi
Lee, Yun-Ju
Liu, Chun-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033591
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:72
中文關鍵詞:欠驅動自適應結構快拆式手指高度可調吸附裝置
外文關鍵詞:Underactuated Adaptive StructureRapid-Changeable FingerHeight-Adjustable Suction System
相關次數:
  • 推薦推薦:0
  • 點閱點閱:420
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在夾爪發展過程中,主要分成服務型與工業型兩大應用情境。服務型夾爪透過模仿人類雙手提取物品形式,目標盡可能提高夾爪運動自由度,用以抓取生活情境中的各式物品,工業型夾爪則因為應用場域在工廠,多半只需要重複夾取產線上的相同物品,因此在成本考量下以兩到三爪的機械夾爪為主,然而此舉也造成工業型夾爪在使用上受限於運動自由度不足,僅能完成基本的工作,若改變應用需要夾取不同物品時,通常就需要更換夾爪。
有些工業型夾爪透過改變不同夾取方式,嘗試提升夾取物品種類,常見如以吸盤取代夾爪手指的吸附式夾爪,藉由吸盤對不同目標物的高適應力,能夠有效增加夾取物品種類,但吸附式夾爪也因為吸附能力仰賴吸盤與目標物之間的真空產生,若吸力不足或在目標物有孔洞的情況下,容易導致夾取失敗。
為此本研究開發出一套新型智慧自適應夾爪,設計可抽換夾指數量的快速拆裝機構,搭配整合氣壓伸縮吸附系統,開發出一套具創新與泛用性之智慧自適應夾爪,使得該夾爪能應付不同任務,彈性改變爪指數量,增加夾取成功率。
With the development of automation technology, the application of mechanical grippers takes advantage of reducing the cost of human resources. According to the application scenarios, mechanical grippers are mainly divided into two types: service and industrial grippers, respectively. The service gripper imitates a human’s dexterous hand to maximize the flexibility of the gripper. However, its fully actuated system requires a large number of actuators to perform a high degree of freedom of motion. Based on research about industrial grippers in recent years, it is found that the they are mainly designed in two or three fingers utilizing an underactuated system to repeatedly carry the same items in the factory. However, it is hard to grasp different items with the same gripper due to the lack of flexibility.
In this thesis, the integrated concepts of both the flexibility of the service gripper and the simplicity of the industrial gripper are proposed and investigated. The gripper is driven by a single motor based on the redundant mechanical structure, which is realized by a differential mechanism. The utilization of differential mechanisms not only builds the adaptive finger but also makes fingers cooperate to perform adaptive grasp, causing the gripper to adapt to different shapes of items and become easier to grasp. Moreover, the proposed gripper incorporates a suction system to enhance its gripping ability in a cluttered environment. Theoretical, numerical, and experimental approaches are used to validate the proposed gripper's grasping ability.
第一章 緒論 1
1.1研究背景 1
1.2文獻回顧 1
1.3欠驅動自適應 8
1.3.1連桿差速裝置(Seesaw Mechanism) 10
1.3.2流體差速裝置(Fluidic T-pipe) 11
1.3.3齒輪差速裝置(Planetary and Bevel Gear Differentials) 11
1.3.4滑輪差速裝置(Movable Pulley) 12
1.4研究問題 13
1.4.1 不同使用情境需開發多種夾爪 13
1.4.2多指間缺乏自適應能力 13
1.4.3不同夾取機構缺乏整合應用 14
1.5研究目標 14
1.6研究方法 16
第二章 研究理論 19
2.1欠驅動自適應手指力學模型推導 19
2.2欠驅動自適應手指指節接觸點分析 27
2.2.1.指尖捏取模式(Fingertip Pinch Mode) 29
2.2.2自適應包覆模式(Adaptive Power Grasp Mode) 31
第三章 機構設計 33
3.1 欠驅動自適應設計 33
3.2 欠驅動自適應夾爪單指設計 35
3.3 欠驅動自適應夾爪多指設計 37
3.3.1 自適應線驅動滑輪多指繞線方法一 38
3.3.2 自適應線驅動滑輪多指繞線方法二 40
3.4 快拆夾爪手指設計 43
3.5 夾爪尺寸設計 47
第四章 研究數據 53
4.1 最佳化接觸點 – Case 1 53
4.2 最佳化接觸點 – Case 2 57
4.3 最佳化接觸點 – Case 3 62
第五章 結論 67
5.1本文貢獻 67
5.2未來展望 68
參考文獻 70
[1] "SCHUNK_ROBOTIC_HAND." https://schunk.com/tw_en/gripping-systems/highlights/svh/ (accessed.
[2] R. Ozawa, Y. Mishima, and Y. Hirano, "Design of a Transmission With Gear Trains for Underactuated Mechanisms," IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1399-1407, 2016.
[3] Y. Hirano, K. Akiyama, and R. Ozawa, "Design of low-cost and easy-assemblable robotic hands with stiff and elastic gear trains," 2016: IEEE.
[4] T. Yoneda, D. Morihiro, and R. Ozawa, "Development of a multifingered robotic hand with the thenar grasp function," Advanced Robotics, vol. 34, no. 10, pp. 661-673, 2020/05/18 2020.
[5] T. Tamamoto, K. Sayama, and K. Koganezawa, "Multi-joint gripper with Differential Gear System," 2014: IEEE.
[6] G. Li and W. Zhang, "Study on coupled and self-adaptive finger for robot hand with parallel rack and belt mechanisms," 2010: IEEE.
[7] C. Della Santina, C. Piazza, G. Grioli, M. Catalano, and A. Bicchi, "Toward Dexterous Manipulation With Augmented Adaptive Synergies: The Pisa/IIT SoftHand 2," IEEE Transactions on Robotics, vol. PP, 04/15 2018.
[8] M. Santello, M. Flanders, and J. F. Soechting, "Postural Hand Synergies for Tool Use," The Journal of Neuroscience, vol. 18, no. 23, pp. 10105-10115, 1998.
[9] C. Y. Brown and H. H. Asada, "Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis," 2007: IEEE.
[10] A. M. Dollar and R. D. Howe, "The Highly Adaptive SDM Hand: Design and Performance Evaluation," The International Journal of Robotics Research, vol. 29, no. 5, pp. 585-597, 2010.
[11] C. Gosselin, F. Pelletier, and T. Laliberte, "An anthropomorphic underactuated robotic hand with 15 dofs and a single actuator," 2008: IEEE.
[12] H. X. Dong, E. Asadi, C. Qiu, J. S. Dai, and I. M. Chen, "Geometric design optimization of an under-actuated tendon-driven robotic gripper," (in English), Robotics and Computer-Integrated Manufacturing, Article vol. 50, pp. 80-89, Apr 2018.
[13] L. Kang, J.-T. Seo, S.-H. Kim, W.-J. Kim, and B.-J. Yi, "Design and Implementation of a Multi-Function Gripper for Grasping General Objects," Applied Sciences, vol. 9, no. 24, p. 5266, 2019.
[14] Y. Tlegenov, K. Telegenov, and A. Shintemirov, "An open-source 3D printed underactuated robotic gripper," 2014: IEEE.
[15] D. Liang, W. Zhang, Z. Sun, and Q. Chen, "PASA finger: A novel parallel and self-adaptive underactuated finger with pinching and enveloping grasp," 2015: IEEE.
[16] S. Ruan and W. Zhang, "PASA-SEBA hand: An underactuated hand with seven-gear empty-trip mechanisms and built-in actuators," 2017: IEEE.
[17] E. Zheng and W. Zhang, "An Underactuated PASA Finger Capable of Perfectly Linear Motion With Compensatory Displacement," Journal of Mechanisms and Robotics, vol. 11, no. 1, p. 014505, 2019.
[18] J. Sun and W. Zhang, "A novel coupled and self-adaptive under-actuated multi-fingered hand with gear–rack–slider mechanism," Journal of Manufacturing Systems, vol. 31, no. 1, pp. 42-49, 2012.
[19] W. Chen, C. Xiong, and Y. Wang, "Analysis and Synthesis of Underactuated Compliant Mechanisms Based on Transmission Properties of Motion and Force," IEEE Transactions on Robotics, vol. 36, no. 3, pp. 773-788, 2020.
[20] L. Birglen and C. M. Gosselin, "Force Analysis of Connected Differential Mechanisms: Application to Grasping," The International Journal of Robotics Research, vol. 25, no. 10, pp. 1033-1046, 2006.
[21] L. Birglen, T. Laliberté, and C. M. Gosselin, Underactuated robotic hands. Springer, 2007.
[22] "MISUMI_IMAO." https://tw.misumi-ec.com/vona2/detail/221005350895/?KWSearch=imao&searchFlow=results2products (accessed.
[23] L. Kang, J.-T. Seo, S.-H. Kim, and B.-J. Yi, "Design of an Integrated Gripper with a Suction System for Grasping in Cluttered Environment," 2019: IEEE.
(此全文20270905後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *