帳號:guest(3.137.178.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡涵皓
作者(外文):Tsai, Han-Hao
論文名稱(中文):透過音圈馬達開發一款主動式力控主軸應用於機械手臂航空材料加工
論文名稱(外文):Force Control for Robotic Deburring on Aviation Materials using Active End-effector with Voice Coil Motor
指導教授(中文):張禎元
指導教授(外文):Chang, Jen-Yuan
口試委員(中文):宋震國
林峻永
馮國華
口試委員(外文):Sung, Cheng-Kuo
Lin, Chun-Yeon
Feng, Guo-Hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033590
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:118
中文關鍵詞:無力規力量控制雜訊估測器反應力估測器機械手臂去毛邊
外文關鍵詞:Force-sensorless controlDisturbance Observer (DOB)Reaction Force Observer (RFOB)Robotic armDeburring
相關次數:
  • 推薦推薦:0
  • 點閱點閱:167
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著工業3.0至4.0的發展近年來於台灣產業界中日漸被重視,無人工廠與自動加工被視為許多傳統加工產業與精密零件代工廠的基礎發展目標,當中便包括了航太零件的加工與製造,而為了達到自動化加工便需要機械手臂來做為輔助工具,機械手臂不論在靈活性以及空間活用性上都遠大於傳統的CNC加工機台,然而,機械手臂最大的問題,在於其因六軸累積誤差以及機構剛性所導致的偏位與加工零件表面精度不佳等結果。因此,為了解決機械手臂本身的精度誤差與剛性議題,本研究藉由音圈馬達開發了一款機械手臂末端致動裝置,並提出了無力規之力量控制架構,藉由雜訊估測器(DOB)以及反應力估測器(RFOB)來建構強健控制系統,並透過實驗與模擬提出了此控制架構的參數調整建議,最終也驗證了此無力規之力量控制架構基於上述的參數調整建議進行調整能達到精準的力量控制結果。此外,為了能更深入了解機械手臂在對航空零件進行切削過程之中的表現行為,本研究透過實際對Rene 77以及Inconel 718料件進行切削,並提出了在主軸轉速與刀具選用上的建議,藉由這些被動參數的選配與本研究所提出的末端致動器力量控制架構,來達到最佳化加工零件表面粗糙度的預期目標。
With the development of Industry 3.0 to 4.0, more and more attention has been paid to the Taiwanese industry in recent years. Unmanned factories and automatic processing are regarded as the basic development goals of many traditional processing industries and other foundries, including the manufacturing of aerospace parts. In order to achieve automatic processing, robotic arms are needed as an auxiliary tool. In Comparison with traditional CNC machines, robotic arms have more flexibility and consume much smaller space. However, the biggest problems of the robotic arm are the cumulative error generated by its six-axes movements and low stiffness of its overall structure which cause poor surface roughness results of machining parts. Therefore, in order to solve the problems mentioned above, this research developed an active end-effector using a voice coil motor, and a force-sensorless control structure based on Disturbance Observer (DOB) and Reaction Force Observer (RFOB) was proposed. Adjustment suggestions about how to tuned the control parameters were given through experiments and simulations, and the control structure was proven to achieve precise force control results. In addition, actual cutting experiments of Rene 77 and Inconel 718 parts were conducted in order to have a deeper understanding about the behavior of the overall cutting processes, and selection suggestions on spindle speed and tool parameters were also given. Through the selection of these passive parameters and the end-effector force control framework proposed in this study, the goal of optimizing the surface roughness of the machining parts is achieved.
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 被動式定力系統設計 2
1.2.2 主動式力控裝置設計 5
1.2.3 系統分析與控制理論 9
1.3 研究問題 20
1.4 研究目標與方法 21
第二章 理論背景 23
2.1 前言 23
2.2 機械手臂運動學計算 24
2.3 機械手臂力控穩定性分析 28
2.4 機械手臂切削建模分析 36
2.5 結語 41
第三章 機械手臂切削參數分析 42
3.1 前言 42
3.2 切削測試夾治具設計 42
3.3 被動切削參數最佳化 44
3.4 結語 54
第四章 機械手臂動力學建模 55
4.1 前言 55
4.2 動力學計算 55
4.3 動力學驗證 61
4.4 結語 64
第五章 末端致動器選用與機構設計 66
5.1 前言 66
5.2 驅動器選用 66
5.3 末端致動器機構設計 68
5.4 結語 70
第六章 力量控制系統 72
6.1 無力規之力量控制系統之優勢 72
6.2離散控制系統架構與分析 77
6.3控制系統實踐 83
6.4控制系統應用於手臂去毛邊模擬 96
6.5結語 109
第七章 結論與未來發展 112
7.1結論 112
7.2 未來發展 114
參考文獻 116
[1] G. M. Bone and M. A. Elbestawi, "Robotic force control for deburring using an active end effector," Robotica, vol. 7, no. 4, pp. 303-308, 1989, doi: 10.1017/S0263574700006688.
[2] Y. L. Kuo, S. Y. Huang, and C. C. Lan, "Sensorless Force Control of Automated Grinding/Deburring Using an Adjustable force regulation mechanism," in 2019 International Conference on Robotics and Automation (ICRA), 20-24 May 2019 2019, pp. 9489-9495, doi: 10.1109/ICRA.2019.8794058.
[3] J. H. Chung and C. Kim, "Modeling and control of a new robotic deburring system," Robotica, vol. 24, no. 2, pp. 229-237, 2006, doi: 10.1017/S0263574705002067.
[4] G. M. Bone and M. A. Elbestawi, "Active end effector control of a low precision robot in deburring," Robotics and Computer-Integrated Manufacturing, vol. 8, no. 2, pp. 87-96, 1991/01/01/ 1991, doi: https://doi.org/10.1016/0736-5845(91)90024-M.
[5] H. Kazerooni, "Direct-drive active compliant end effector (active RCC)," IEEE Journal on Robotics and Automation, vol. 4, no. 3, pp. 324-333, 1988, doi: 10.1109/56.793.
[6] S. Eppinger and W. Seering, "Introduction to dynamic models for robot force control," IEEE Control Systems Magazine, vol. 7, no. 2, pp. 48-52, 1987, doi: 10.1109/MCS.1987.1105274.
[7] S. D. Eppinger and W. P. Seering, "Three dynamic problems in robot force control," in Proceedings, 1989 International Conference on Robotics and Automation, 14-19 May 1989 1989, pp. 392-397 vol.1, doi: 10.1109/ROBOT.1989.100019.
[8] J. K. Mills and D. M. Lokhorst, "Stability and control of robotic manipulators during contact/noncontact task transition," IEEE Transactions on Robotics and Automation, vol. 9, no. 3, pp. 335-345, 1993, doi: 10.1109/70.240205.
[9] B. Brogliato and P. Orhant, "On the stability of a simple contact-non contact robotic task," in Proceedings of 1994 33rd IEEE Conference on Decision and Control, 14-16 Dec. 1994 1994, vol. 3, pp. 2400-2401 vol.3, doi: 10.1109/CDC.1994.411456.
[10] P. B. Goldsanith, "Stability of robot force control applied to unilateral constraints," in Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering, 26-29 May 1996 1996, vol. 2, pp. 498-501 vol.2, doi: 10.1109/CCECE.1996.548199.
[11] M. G. Her and H. Kazerooni, "Automated Robotic Deburring of Parts Using Compliance Control," Journal of Dynamic Systems, Measurement, and Control, vol. 113, no. 1, pp. 60-66, 1991, doi: 10.1115/1.2896360.
[12] H. Kazerooni, J. J. Bausch, and B. M. Kramer, "An Approach to Automated Deburring by Robot Manipulators," Journal of Dynamic Systems, Measurement, and Control, vol. 108, no. 4, pp. 354-359, 1986, doi: 10.1115/1.3143806.
[13] T. Stepien, L. Sweet, M. Good, and M. Tomizuka, "Control of tool/workpiece contact force with application to robotic deburring," IEEE Journal on Robotics and Automation, vol. 3, no. 1, pp. 7-18, 1987, doi: 10.1109/JRA.1987.1087077.
[14] A.-N. Sharkawy and P. Koustoumpardis, "Dynamics and Computed-Torque Control of a 2-DOF manipulator: Mathematical Analysis," vol. 28, pp. 201-212, 10/31 2019.
[15] P. J. Antsaklis and A. Nerode, "Hybrid Control Systems: An Introductory Discussion to the Special Issue," IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 457-460, 1998, doi: 10.1109/TAC.1998.664148.
[16] S. Jung and T. C. Hsia, Adaptive force tracking impedance control of robot for cutting nonhomogeneous workpiece. 1999, pp. 1800-1805 vol.3.
[17] X. Wang, Y. Wang, and Y. Xue, "Adaptive Control of Robotic Deburring Process Based on Impedance Control," in 2006 4th IEEE International Conference on Industrial Informatics, 16-18 Aug. 2006 2006, pp. 921-925, doi: 10.1109/INDIN.2006.275700.
[18] P. R. Pagilla and Y. Biao, "Adaptive control of robotic surface finishing processes," in Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), 25-27 June 2001 2001, vol. 1, pp. 630-635 vol.1, doi: 10.1109/ACC.2001.945617.
[19] Y. Tao et al., "Fuzzy PID control method of deburring industrial robots," Journal of Intelligent & Fuzzy Systems, vol. 29, pp. 2447-2455, 2015, doi: 10.3233/IFS-151945.
[20] G. M. Bone, M. A. Elbestawi, R. Lingarkar, and L. Liu, "Force Control for Robotic Deburring," Journal of Dynamic Systems, Measurement, and Control, vol. 113, no. 3, pp. 395-400, 1991, doi: 10.1115/1.2896423.
[21] R. Rascón, J. Alvarez, and L. T. Aguilar, "Feedback stabilization and force control using sliding modes in a mechanical system subject to unilateral constraints," in 2010 11th International Workshop on Variable Structure Systems (VSS), 26-28 June 2010 2010, pp. 341-345, doi: 10.1109/VSS.2010.5544700.
[22] W. B. Gevarter, "Basic relations for control of flexible vehicles," AIAA Journal, vol. 8, no. 4, pp. 666-672, 1970/04/01 1970, doi: 10.2514/3.5739.
[23] V. Kvrgic and J. Vidakovic, "Efficient method for robot forward dynamics computation," Mechanism and Machine Theory, vol. 145, p. 103680, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.mechmachtheory.2019.103680.
[24] K. Kufieta and J. T. Gravdahl, "Force estimation in robotic manipulators: Modeling, simulation and experiments," Department of Engineering Cybernetics NTNU Norwegian University of Science and Technology, 2014.
[25] S. Katsura, Y. Matsumoto, and K. Ohnishi, "Analysis and experimental validation of force bandwidth for force control," IEEE Transactions on Industrial Electronics, vol. 53, no. 3, pp. 922-928, 2006, doi: 10.1109/TIE.2006.874262.
[26] E. Sariyildiz and K. Ohnishi, "A comparison study for force sensor and reaction force observer based robust force control systems," in 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 1-4 June 2014 2014, pp. 1156-1161, doi: 10.1109/ISIE.2014.6864777.
[27] E. Sariyildiz and K. Ohnishi, "A Guide to Design Disturbance Observer," Journal of Dynamic Systems, Measurement, and Control, vol. 136, no. 2, 2013, doi: 10.1115/1.4025801.
[28] E. Sariyildiz, S. Hangai, T. Uzunovic, and T. Nozaki, "Discrete-Time Analysis and Synthesis of Disturbance Observer-Based Robust Force Control Systems," IEEE Access, vol. 9, pp. 148911-148924, 2021, doi: 10.1109/ACCESS.2021.3123365.
[29] E. Sariyildiz, S. Hangai, T. Uzunovic, T. Nozaki, and K. Ohnishi, "Stability and Robustness of the Disturbance Observer-Based Motion Control Systems in Discrete-Time Domain," IEEE/ASME Transactions on Mechatronics, vol. 26, no. 4, pp. 2139-2150, 2021, doi: 10.1109/TMECH.2020.3032115.
[30] W. Kline, "The prediction of cutting forces and surface accuracy for the end milling process," 01/01 1982.
[31] J. Li et al., "A High-Bandwidth End-Effector With Active Force Control for Robotic Polishing," IEEE Access, vol. 8, pp. 169122-169135, 2020, doi: 10.1109/ACCESS.2020.3022930.
(此全文20270727後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *