帳號:guest(3.138.67.97)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林中偉
作者(外文):Lin, Chung-Wei
論文名稱(中文):創新自適應演算法應用於磁性編碼器訊號修正及精度提升
論文名稱(外文):A new adaptive algorithm for signal error correction and accuracy enhancement of magnetic encoder
指導教授(中文):宋震國
指導教授(外文):Sung, Cheng-Kuo
口試委員(中文):張禎元
徐志豪
口試委員(外文):Chang, Jen-Yuan
Xu, Zhi-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033575
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:131
中文關鍵詞:磁性編碼器自適應演算法訊號修正
外文關鍵詞:Magnetic encoderAdaptive algorithmSignal correction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:238
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
增量式磁性編碼器類比訊號為正弦與餘弦訊號,其誤差包含直流偏移、振幅不等、相位偏移、諧波誤差。現今對於前三種誤差已有許多處理方式,但大多數方法僅針對固定量值進行修正。在訊號誤差隨使用情況而改變的情境下,需要一套能夠即時修正訊號的方法。除這三種誤差之外,磁性編碼器訊號中常有諧波的成份出現,此特徵主要來自於磁性尺提供的磁場與異向性磁阻感測器的形狀異向性。
本研究提出新的自適應演算法對前三項誤差進行即時的量值估計與消除。此方法在演算法中加入虛擬的量測數據,以避免系統在停止運動時出現估計錯誤的現象。對於訊號中諧波成份,選用訊號交錯時的量值以估計誤差,在特定範圍內使用同樣的數值進行修正。藉本文所提之訊號修正方案,編碼器位置諧波誤差平均振幅可降低至0.5 μm以下。
The incremental magnetic encoder outputs quadrature signals with error components, these errors include DC offset, unequal gain, phase shift, and harmonic error. Nowadays, there are many ways to correct the first three types of errors by assuming that each error is constant. However, the signal errors vary with the environmental change. Hence, an algorithm that can track the signal errors in real-time is required. Besides the first three errors, the signals contain the harmonic error, which results from the harmonic magnetic field and the shape anisotropic of the anisotropic magnetoresistance (AMR) sensor.
This study proposes a new adaptive algorithm to estimate and then eliminate the magnitude of the first three errors. Virtual points are added to measurement data to prevent estimation errors when the motion of the system stops. The harmonic error is estimated with the magnitudes of the signals at crossingpoints, and is corrected with the same value at a certain range. With the proposed correction method, the average magnitude of harmonic component of position error reduces to below 0.5 μm.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖表目錄 VII
第一章 緒論 1
1-1. 前言 1
1-2. 技術背景 2
1-3. 文獻回顧 7
1-3-1. 訊號修正 7
1-3-2. 細分割 10
1-4. 研究動機與目的 14
1-5. 本文架構 15
第二章 研究理論 16
2-1. 靜磁學 16
2-2. 磁性感測器 18
2-2-1. 霍爾效應 18
2-2-2. 磁阻效應 19
2-3. 編碼器訊號 22
2-3-1. 類比訊號 22
2-3-2. 數位訊號 25
2-4. 訊號修正方法 31
2-5. 自適應演算法 34
第三章 磁性尺磁場 42
3-1. 垂直交替磁化 42
3-1-1. 垂直磁化磁場模型 42
3-1-2. 磁場模型疊加方法 47
3-2. 水平交替磁化與海爾貝克陣列 53
第四章 訊號誤差分析 61
4-1. 訊號誤差與位置精度 61
4-1-1. 常見訊號誤差 64
4-1-2. 諧波誤差 69
4-1-3. 週期非理想誤差 72
4-2. 實驗架設與精度檢測 74
4-2-1. 實驗設備 74
4-2-1. 數據分析 76
第五章 訊號修正方法 87
5-1. 常見訊號誤差 87
5-2. 訊號諧波誤差 117
第六章 結論與未來工作 125
6-1. 結論 125
6-2. 未來工作 126
參考文獻 128
[1] 經濟部工業局,智慧機械產業2021-2023專業人才需求推估調查,2020。
[2] K. Miyashita, T. Takahashi, and M. Yamanaka, “Features of a magnetic rotary encoder,” IEEE Trans. Magn., Vol. 23, No. 5, pp. 2182-2184, Sept. 1987.
[3] RLS, Retrieved from: https://www.rls.si/
[4] RENISHAW, Retrieved from: https://www.renishaw.com/
[5] HEIDENHAIN, Retrieved from: https://www.heidenhain.com/
[6] Electronica Mechatronic Systems, Retrieved from: http://www.electronicaems.com/
[7] ELTRA, Retrieved from: https://eltra-encoder.eu/
[8] P. L. M. Heydemann, “Determination and Correction of Quadrature Fringe Measurement Errors in Interferometers,” Applied Optics, Vol.20, No. 19, pp. 3382-3384, Oct. 1981.
[9] K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precision Eng., Vol. 12, No. 4, pp. 195-198, Oct. 1990.
[10] S. Balemi, “Automatic calibration of sinusoidal encoder signals,” IFAC Proceedings Volumes, Vol. 38, No. 1, pp. 68-73, Jul. 2005.
[11] M. Benammar, L. B. Brahim, and M. A. Alhamadi, “A High Precision Resolver-to-DC Converter,” IEEE Trans. on Instrum. Meas., Vol. 54, No. 6, pp. 2289-2296, Dec. 2005.
[12] R. Hoseinnezhad, A. Bab-Hadiashar, and P. Harding, “Calibration of Resolver Sensors in Electromechanical Braking Systems: A Modified Recursive Weighted Least Squares Approach,” IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp. 1052-1060, Apr. 2007.
[13] E. Ulu, N. G. Ulu, and M. Cakmakci, “Adaptive correction and look-up table based interpolation of quadrature encoder signals,” 5th. Annual Conf. of ASME with 11th. Conf. of JSME, Vol. 2, pp. 543-552, Oct. 2012.
[14] 陳佳妤,磁性量測系統之磁化與精度分析,國立清華大學動力機械工程學系碩士論文,2015。
[15] 張哲綱,多極次充磁頭用於製作高解析度與高精度磁性尺之可行性研究,國立清華大學動力機械工程學系碩士論文,2020。
[16] 吳惇哲,磁性編碼器諧波雜訊之分析與排除,國立清華大學動力機械工程學系碩士論文,2021。
[17] N. C. Cheung, “An innovative method to increase the resolution of optical encoders in motion servo systems,” IEEE Int. Conf. on PEDS, pp. 797-802, Jul. 1999.
[18] T. Emura, L. Wang, and A. Arakawa, “A High-Resolution Interpolator for Incremental Encoders by Tow-Phase Type PLL Method,” Proc. of IECON ‘93 - 19th Annual Conf. of IEEE Ind. Electron., pp. 1540-1545, Nov. 1993.
[19] T. Emura and L. Wang, “A High-Resolution Interpolator for Incremental Encoders Based on the Quadrature PLL Method,” IEEE Trans. Ind. Electron., Vol. 47, No. 1, pp. 84-90, Feb. 2000.
[20] K. K. Tan, H. X. Zhou, and T. H. Lee, “New Interpolation Method for Quadrature Encoder Signals,” IEEE Trans. on Instrum. Meas., Vol. 51, No. 5, pp. 1073-1079, Oct. 2002.
[21] H. T. Le, H. V. Hoang, and J. W. Jeon, “Efficient Method for Correction and Interpolation Signal of Magnetic Encoders,” IEEE Int. Conf. on INDIN, pp. 1383-1388, Jul. 2008.
[22] H. V. Hoang and J. W. Jeon, “An Efficient Approach to Correct the Signals and Generate High-Resolution Quadrature Pulses for Magnetic Encoders,” IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 3634-3646, Aug. 2011.
[23] R. Andraka, “A survey of CORDIC algorithms for FPGA based computers,” Proc. of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays, FPGA ‘98, pp. 191-200, Mar. 1998.
[24] S. N. Mokhtar, M. I. Ayub, N. Ismall, and N. G. N. Daud, “Implementation of trigonometric function using CORDIC algorithms,” AIP Conf. Proc., Vol. 1930, No. 1, Feb. 2018.
[25] D. K. Cheng, “Field and Wave Electromagnetics,” 2nd ed., 1983.
[26] E. H. Hall, “On a New Action of the Magnet on Electric Currents,” Am. J. Math., Vol. 2, No. 3, pp. 287-292, Sept. 1879.
[27] Melexis, Retrieved from: https://www.melexis.com/
[28] W. Thomson, “On the electro-dynamic qualities of metals: Effects of magnetization on the electric conductivity of nickel and iron,” Proc. Roy. Soc., Vol. 8, pp. 546-550, 1857.
[29] T. McGuire and R. Potter, “Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys,” IEEE Trans. Magn., Vol. 11, No. 4, pp. 1018-1038, Jul. 1975.
[30] Sensitec, Retrieved from: https://www.sensitec.com/
[31] 高清芬,光柵位移干涉術,國立交通大學光電工程研究所博士論文,2005年。
[32] iC-Haus, Retrieved from: https://www.ichaus.de/
[33] S. Rajan, S. Wang, R. Inkol, and A. Joyal, “Efficient Approximations for the Arctangent Function,” IEEE Signal Processing Mag., pp. 108-111, May 2006.
[34] A. D. Poularikas and Z. M. Ramadan, “Adaptive filtering primer with MATLAB,” 1st ed., 2006.
[35] M. H. Hayes, “Statistical Digital Signal Processing and Modeling,” 1st ed., 1996.
[36] S. Haykin, “Adaptive Filter Theory,” 3rd ed., 2002.
[37] A. H. Sayed, “Adaptive Filters,” 1st ed., 2008.
[38] HIWIN, Retrieved from: https://www.hiwin.tw/
[39] National Instruments, Retrieved from: https://www.ni.com/
[40] G. Cardano, “Ars Magna,” 1545.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *