帳號:guest(3.17.162.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李宜家
作者(外文):Lee, I-Chia
論文名稱(中文):應用機器學習進行3-UPU型並聯式機構之最佳化加減速規劃
論文名稱(外文):Machine Learning Based Optimal Acceleration/deceleration Design for a 3-UPU type Parallel Kinematic Mechanism
指導教授(中文):宋震國
指導教授(外文):Sung, Cheng-Kuo
口試委員(中文):邱昱仁
蔡志成
董必正
口試委員(外文):Chiu, Yu-Jen
Tsai, Jhy-Cherng
Tung, Pi-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033565
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:80
中文關鍵詞:並聯式機構3-UPU機器學習加減速規劃插補器
外文關鍵詞:PKM3-UPUMachine learningAcceleration/deceleration designInterpolator
相關次數:
  • 推薦推薦:0
  • 點閱點閱:228
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
3-UPU型並聯式機構包含了三組配置相同的連桿,依序由萬向接頭(universal joint)、滑動接頭(prismatic joint)與萬向接頭串接,透過線性驅動三個滑動接頭共同控制末端效應器之運動。為了避免過大的加/減速變化影響加工精度,甚至造成機台受損,在CNC控制器中包含了處理系統運動規劃的插補器(interpolator)與控制系統實際運動的控制器(controller)。目前已有許多文獻探討運動輪廓(motion profile)對機台穩定性的影響,不同於多數文獻僅考量端效器之運動規劃,本研究以本實驗室所開發的3-UPU型並聯式機構為載具,考量其三軸驅動量、加速度與急跳度極限,提出一最佳化之插補器機器學習模型,規劃最佳化運動輪廓。
本文首先推導3-UPU型並聯式機構之運動學,藉由空間向量關係推得順、逆向運動學的解析解,可迅速求得系統線性驅動量與末端效應器座標之關係。接著推導此機構之運動靜力學通式,估算系統容許的端效器加速度極限。最後以PyTorch建立符合此系統之機器學習模型進行運動輪廓的最佳化,並探討模型中的損失函數(loss function)與超參數(hyperparameter)對計算結果的影響。經此機器學習模型最佳化的路徑(path)不僅在端效器中心點呈現平滑而連續的運動輪廓,驅動端的急跳度也在使用者設定的極限值以內,且最大限度的縮短運動總時間,充分發揮此並聯式工具機之性能,並提供了此機台未來投入智慧製造之可能性。
A 3-UPU Parallel Kinematic Mechanism (PKM) contains three identical limbs, each of which is connected by universal joint, prismatic joint and another universal joint in sequence. The end effector is controlled via the linear motion of the prismatic joint of each limb. An interpolator that plans the motion of the system and a controller that maneuvers the motion are included in the CNC system to avoid large acceleration/deceleration which could undermine the machining accuracy or cause machinery damage. Many studies have been focusing on the effect of motion profile to the stability of the machine, but many of which consider only the motion planning of the end effectors. Taking the 3-UPU PKM developed by our laboratory as a research subject, in this study, we proposed a machine learning interpolator that considers kinematics, acceleration, and jerk limits of the three limbs and the motors. We first derived the analytical solution for both forward and inverse kinematics of the 3-UPU PKM, providing us the relationship between the lengths of the limbs and the position of the end effector. Next, we derived the general solution to the kinetostatics that computes the loading of the joints, which
III
constrain the optimizing process. Finally, we developed a machine-learned model that optimizes the motion profiles. Discussions about the effects of the design of the loss function are included. This interpolator contains an optimization that considers the constrains and the motions of both the end effector and the actuators, providing a possible precursor for the development of a cyber-physical system.
摘要 ............................................................................................................. I
Abstract ...................................................................................................... II
致謝 .......................................................................................................... IV
目錄 .......................................................................................................... VI
圖表目錄 ................................................................................................ VIII
第1章 緒論 ........................................................................................... 1
1-1. 研究背景 .................................................................................................................. 1
1-2. 文獻回顧 .................................................................................................................. 3
1-2-1. 並聯式機構之發展 ......................................................................................... 3
1-2-2. 插補與運動控制 ............................................................................................. 5
1-3. 研究目的與研究方法 .............................................................................................. 7
第2章 3-UPU型並聯式機構介紹 ....................................................... 9
2-1. 構型介紹與自由度計算 .......................................................................................... 9
2-2. 座標與參數定義 .................................................................................................... 12
2-3. 3-UPU並聯式機構運動學模型 ........................................................................... 15
2-3-1. 逆向運動學 ................................................................................................... 16
2-3-2. 順向運動學 ................................................................................................... 17
2-4. 運動靜力學模型 .................................................................................................... 18
第3章 3-UPU並聯式機構系統加減速規劃 ..................................... 23
3-1. 規劃指定路徑之速度曲線方法 ............................................................................ 24
3-1-1. 梯形加減速規劃(Trapezoidal Velocity Profile) ........................................... 24
3-1-2. S型加減速規劃(S-curve Velocity Profile) .................................................. 26
3-2. 機器學習 ................................................................................................................ 28
VII
3-2-1. PyTorch簡介 ................................................................................................ 29
3-2-2. 最佳化演算法 ............................................................................................... 29
3-3. 3-UPU型並聯式機構系統加減速規劃機器學習模型........................................ 31
3-3-1. 路徑定義 ....................................................................................................... 31
3-3-2. 機器學習模型 ............................................................................................... 32
3-3-3. 機台物理限制條件 ....................................................................................... 37
第4章 結果與討論 ............................................................................. 39
4-1. 給定測試路徑 ........................................................................................................ 39
4-2. 最佳化多種指定路徑加減速之超參數設定與分析 ............................................ 44
4-2-1. 測試路徑A最佳化結果分析 ...................................................................... 45
4-2-2. 測試路徑B最佳化結果分析 ...................................................................... 55
4-2-3. 測試路徑C最佳化結果分析 ...................................................................... 63
第5章 結論與未來工作 ..................................................................... 71
5-1. 結論 ........................................................................................................................ 71
5-2. 未來工作 ................................................................................................................ 73
參考文獻 ................................................................................................... 74
[1] 羅佐良、林錦德、梁碩芃, 何謂智慧機械(工具機篇), 臺灣機械工業同業公會, pp. 8–14, 2016.
[2] F.-Y. Wang, “The Emergence of Intelligent Enterprises: From CPS to CPSS,” IEEE Computer Society, pp. 85–88, 2010. [Online]. Available: www.computer.org/intelligent
[3] Y. D. Patel and P. M. George, “Parallel Manipulators Applications—A Survey,” Modern Mechanical Engineering, vol. 02, no. 03, pp. 57–64, 2012, doi: 10.4236/mme.2012.23008.
[4] Z. Z. Liu, F. L. Luo, and M. A. Rahman, “Robust and precision motion control system of linear-motor direct drive for high-speed X-Y table positioning mechanism,” IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1357–1363, Oct. 2005, doi: 10.1109/TIE.2005.855661.
[5] L. W. Tsai, “Systematic Enumeration of Parallel Manipulators,” in Parallel Kinematic Machines, Springer, London, 1999, pp. 33–49. doi: 10.1007/978-1-4471-0885-6_3.
[6] Willard L. V. Pollard, “Position-controlling apparatus,” Apr. 22, 1942
[7] J. Gallardo-Alvarado, “Gough’s Tyre Testing Machine,” in Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory, Springer, Cham, 2016, pp. 255–280. doi: 10.1007/978-3-319-31126-5_12.
[8] J. Gallardo-Alvarado, “The Original Stewart Platform,” in Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory, Springer, Cham, 2016, pp. 281–299. doi: 10.1007/978-3-319-31126-5_13.
[9] L. Rey and R. Clavel, “The Delta Parallel Robot,” in Parallel Kinematic Machines, Springer, London, 1999, pp. 401–417. doi: 10.1007/978-1-4471-0885-6_29.
[10] “HIWIN RD403-1100-PR-GB 並聯式機器手臂.” https://www.hiwin.tw/products/mar/delta/rd403/rd403_1100_pr_gb.aspx (accessed Nov. 30, 2021).
[11] “Exechon XMini-Portable machine tool system uses PKM technology.” https://exechon.com/xmini/ (accessed Nov. 30, 2021).
[12] 李峰吉, 高速高精度之小線段命令運動軌跡插值介紹, 機械工業雜誌, 2010.
[13] 郭倫毓, 國立臺灣大學博士論文, 多軸加工機之智慧型高速高精度軌跡控制, 2002.
[14] S.-S. Yeh and P.-L. Hsu, “Adaptive-feedrate interpolation for parametric curves with a con®ned chord error,” 2002. [Online]. Available: www.elsevier.com/locate/cad
[15] M. Goldberg, “Improving productivity by using innovative metal cutting solutions with an emphasis on green machining,” International Journal of Machining and Machinability of Materials, vol. 12, no. 1–2, pp. 117–125, 2012, doi: 10.1504/IJMMM.2012.048561/ASSET/IMAGES/LARGE/IJMMM_48561_FIG6.JPEG.
[16] “OMATIVE Adaptive Control & Monitoring (ACM) System for SINUMERIK,” 2019.
[17] Hakan Gurocak, Industrial Motion Control Motor Selection, Drives, Controller Tuning, Applications by Hakan Gürocak (z-lib.org). 2015.
[18] J. R. García Martínez, J. Rodríguez Reséndiz, M. Á. Martínez Prado, and E. E. Cruz Miguel, “Assessment of jerk performance s-curve and trapezoidal velocity profiles,” Jul. 2017. doi: 10.1109/CONIIN.2017.7968187.
[19] P. H. Meckl, P. B. Arestides, and M. C. Woods, “Optimized S-curve motion profiles for minimum residual vibration,” in Proceedings of the American Control Conference, 1998, vol. 5, pp. 2627–2631. doi: 10.1109/ACC.1998.688324.
[20] H. Shuanghui, S. Fang, L. Jie, and H. Minghui, “An applied cnc acceleration and deceleration control algorithm research,” Proceedings of 2008 IEEE International Conference on Mechatronics and Automation, ICMA 2008, pp. 404–408, 2008, doi: 10.1109/ICMA.2008.4798788.
[21] K. Zheng and L. Cheng, “Adaptive S-curve acceleration/deceleration control method,” Proceedings of the World Congress on Intelligent Control and Automation (WCICA), pp. 2752–2756, 2008, doi: 10.1109/WCICA.2008.4593360.
[22] 張承豪, 國立中正大學碩士論文, 雙手臂加工系統平滑加減速最佳化設計, 2020.
[23] 謝岳峻, 國立中正大學碩士論文, S型加減速參數最佳化分析並應用於五軸循跡控制器, 2014.
[24] C. Y. Chou, H. C. Su, S. L. Chen, and C. C. Sun, “Genetic algorithm based optimization of asymmetric S-shape acceleration/deceleration for biaxial motion systems,” Proceedings - The 12th International Conference on Electrical Machines and Systems, ICEMS 2009, 2009, doi: 10.1109/ICEMS.2009.5382808.
[25] T. C. Lu and S. L. Chen, “Genetic algorithm-based S-curve acceleration and deceleration for five-axis machine tools,” The International Journal of Advanced Manufacturing Technology 2016 87:1, vol. 87, no. 1, pp. 219–232, Feb. 2016, doi: 10.1007/S00170-016-8464-0.
[26] L. W. Tsai and S. Joshi, “Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator,” Journal of Mechanical Design, vol. 122, no. 4, pp. 439–446, Dec. 2000, doi: 10.1115/1.1311612.
[27] 曾勇智, 國立清華大學碩士論文, 3-PUU型並聯式機構應用於五軸加工機之參數優化與剛性分析, 2019. Accessed: Nov. 20, 2021. [Online]. Available: https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/ccd=tYeafH/record?r1=12&h1=2
[28] 陳晏菘, 國立清華大學碩士論文, 利用螺旋理論探討具變化連桿長度3-UPU型並聯式機構之剛性分析, 2020.
[29] 楊培弘, 國立清華大學碩士論文, 考量關節撓性於具變化連桿長度3-UPU型並聯式機構之動態響應, 2020.
[30] 向志軒, 國立清華大學碩士論文, 具變化連桿長度3-UPU型並聯式機構之平衡設計與最佳化, 2021.
[31] Q. Qi, D. Zhao, T. W. Liao, and F. Tao, “Modeling of cyber-physical systems and digital twin based on edge computing, fog computing and cloud computing towards smart manufacturing,” in ASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018, 2018, vol. 1. doi: 10.1115/MSEC2018-6435.
[32] S. Lu, B. Ding, and Y. Li, “Minimum-jerk trajectory planning pertaining to a translational 3-degree-of-freedom parallel manipulator through piecewise quintic polynomials interpolation,” Advances in Mechanical Engineering, vol. 12, no. 3, Mar. 2020, doi: 10.1177/1687814020913667.
[33] W. Tsai and S. Joshi, “Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator,” Journal of Mechanical Design, vol. 122, pp. 439–446, 2000, [Online]. Available: http://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/122/4/439/5687354/439_1.pdf
[34] 全國產化並聯機構工具機研發( II ), 科技部計畫編號MOST109-2622-E007-004-CC2 , 2020. https://www.grb.gov.tw/search/planDetail?id=13539970 (accessed Jun. 28, 2022).
[35] S. Sra, S. Nowozin, and S. J. Wright, “Optimization for Machine Learning,” 2012.
[36] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Dec. 2017. [Online]. Available: http://arxiv.org/abs/1412.6980
[37] “Adam — PyTorch 1.10.0 documentation.” https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam (accessed Nov. 27, 2021).
[38] S. S. Perumaal and N. Jawahar, “Automated trajectory planner of industrial robot for pick-and-place task,” International Journal of Advanced Robotic Systems, vol. 10, Feb. 2013, doi: 10.5772/53940.
[39] K. Erkorkmaz and Y. Altintas, “High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation,” 2001.
[40] A. Visioli, “Trajectory planning of robot manipulators by using algebraic and trigonometric splines,” Robotica, vol. 18, no. 6, pp. 611–631, Nov. 2000, doi: 10.1017/S0263574700002721.
[41] S. Macfarlane and E. A. Croft, “Jerk-bounded manipulator trajectory planning: Design for real-time applications,” IEEE Transactions on Robotics and Automation, vol. 19, no. 1, pp. 42–52, Feb. 2003, doi: 10.1109/TRA.2002.807548.
[42] E. Dyllong and A. Visioli, “Planning and real-time modifications of a trajectory using spline techniques,” Robotica, vol. 21, no. 5, pp. 475–482, Sep. 2003, doi: 10.1017/S0263574703005009.
[43] W. Aribowo and K. Terashima, “Cubic spline trajectory planning and vibration suppression of semiconductor wafer transfer robot arm,” International Journal of Automation Technology, vol. 8, no. 2, pp. 265–274, 2014, doi: 10.20965/ijat.2014.p0265.
[44] J. Y. Lai, K. Y. Lin, S. J. Tseng, and W. der Ueng, “On the development of a parametric interpolator with confined chord error, feedrate, acceleration and jerk,” International Journal of Advanced Manufacturing Technology, vol. 37, no. 1–2, pp. 104–121, Apr. 2008, doi: 10.1007/s00170-007-0954-7.
[45] S. Macfarlane and E. A. Croft, “Jerk-bounded manipulator trajectory planning: Design for real-time applications,” IEEE Transactions on Robotics and Automation, vol. 19, no. 1, pp. 42–52, Feb. 2003, doi: 10.1109/TRA.2002.807548.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *