帳號:guest(18.221.243.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張哲培
作者(外文):Chang, Che-Pei
論文名稱(中文):多尺度製程導向扇出型面板級封裝翹曲模擬技術之發展與研究
論文名稱(外文):Development and Investigation on Warpage Simulation Technology of Multi-Scale Process-Oriented Fan-Out Panel-Level Package
指導教授(中文):李昌駿
指導教授(外文):Lee, Chang-Chun
口試委員(中文):鄭仙志
施孟鎧
口試委員(外文):Cheng, Hsien-Chie
Shih, Meng-Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033552
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:70
中文關鍵詞:多尺度模型重新佈線層優先之扇出型面板級封裝製程導向有限元素模擬等效材料方法
外文關鍵詞:Multi-Scale modelingRDL-first FO-PLPProcess-Oriented FEMEquivalent method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:91
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在先進封裝技術中,扇出型面板級封裝(Fan-Out Panel-Level Packaging,FO-PLP )因其薄型化、高I/O數、異質整合等優勢,近年來受到業界所重視且未來將成為封裝生產主力。然而,扇出型面板級封裝雖有大面積製造優勢,但其製程過程中引起的翹曲現象易發生後續製程和電子元件良率等問題。對於封裝製程上的可行性以及後續可靠度問題,結構翹曲為迫切解決之問題,而造成該翹曲行為主要歸因於結構內部相異材料間熱膨脹係數不匹配導致。欲改善翹曲的現象通常需要大量實驗進行開發與研究,而時間與經費的成本將不容小覷。因此多數研究採用有限元素模擬分析探討製程翹曲之議題。故此,本研究將建立重新佈線層優先之扇出型面板級封裝多尺度模型製程導向模擬技術。在製程導向模擬時,使用等效材料方法考慮封裝結構較為複雜之重新佈線層(Redistribution Layer,RDL)與微凸塊(Micro Bump)結構,同時,加入等效材料之製程參考溫度的影響,並且考量到模封材料在固化過程中引起的化學收縮量。由於扇出型面板級封裝厚度極薄,自身重力將不容忽視,故在載具模型底部將會設置接觸元素施加重力場效應。此外 於重新佈線層優先之扇出型面板級封裝製程中有著切割之步驟;經過分割後對於模型的建構勢必會出現多尺度上的問題,本研究之其一創新特點在於多尺度模型將會一次性地完整建構;期間使用到多點約束(Multipoint Constraint,MPC)來連接不同尺度下的模型。MPC方程式將被視為多尺度模型的橋樑,確立製程模擬後會與實驗載具進行模擬技術之階段驗證;分別在面板級與單位封裝體。模擬結果指出單位封裝體在不同位置下會有相異的翹曲表現。此模擬方法將有利於後續重新佈線層優先之扇出型面板級封裝製程之開發與研究。
With the advantage of high I/O account, thin substrate, and good heterogeneous ability, the fan-out panel-level packaging (FO-PLP) has become a major topic for the future design of novel packaging. Despite of the enlarged area of the panel-level package, the process-induced warpage may cause a serious yielding problem in the subsequent process and assembly for the package. The process-induced warpage would be an urgent issue need to be solved for the FO-PLP. The coefficient of thermal expansion (CTE) mismatch between the materials is the main cause of the warpage. The process temperature for material is also a factor need to be considered. The tremendous cost of time for investigating the effect between materials through experiment is a problem that cannot be ignored. Therefore, the finite element analysis (FEA) is proposed in many researches to overcome the problem of time cost. Another issue is the discontinuous model and warpage after the sawing process from panel to stripe, and stripe to unit package. In this research, a redistribution layer (RDL) first FO-PLP is presented with integrated multiple scale of package model in FEA analysis. The complicated fine RDL and micro-bump is considered with the equivalent materials method and the equivalent stress-free temperature in the process-orientation simulation. The chemical shrinkage of molding underfill (MUF) is also concerned for the material characteristic. The effect of gravity cannot be ignored in the simulation due to the large area of FO-PLP. A rigid plane is constructed on the bottom of model to give a reference plane for the FEA. To give an entire process flow simulation, the saw process of panel to stripe and stripe to package is presented. The saw process must have a multiple scale problem in the FEA. Therefore, the multipoint constraint (MPC) is applied on the boundary of multiple scale model. The estimated warpage from the FEA is verified with measured warpage from experiment for three process steps, panel-level, stripe-level, and single unit package. The measured warpage of a single unit package is found that the position of package on the stripe-level would determine the warpage. The presented methodology for FEA also indicated the same results as the experiment. The warpage error between the simulation and experiment are below 10 %. Accordingly, the presented simulation methodology is validated, which can be utilized to estimate the warpage of FO-PLP. The factor and the material for the process can be further optimized based on the proposed methodology with FEA.
摘要 I
ABSTRACT III
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 電子封裝技術發展簡介 2
1.3 文獻回顧 5
1.3.1 等效材料方法於有限元素模擬之應用 6
1.3.2 扇出型封裝翹曲模擬分析 11
1.4 研究動機 16
1.5 研究目標 18
第二章 基礎理論 19
2.1 等效材料機械特性 19
2.1.1 等效材料機械性質之模擬估算法 19
2.1.2 等效材料之製程模擬參考溫度 23
2.2 次模型模擬分析技術之建立 32
2.3 熱固性高分子聚合物之機械特性 35
2.3.1 固化反應行為 35
2.3.2 固化收縮之力學分析 36
第三章 多尺度重新佈線層優先之扇出型面板級封裝製程模擬方法 42
3.1 重新佈線層優先之扇出型面板級封裝實驗載具 42
3.2 重新佈線層優先之扇出型面板級封裝製程導向模擬分析 45
3.2.1 製程導向模擬分析流程 45
3.2.2 多尺度模型與邊界條件的設定 47
第四章 多尺度重新佈線層優先之扇出型面板級封裝製程模擬分析結果與討論 52
4.1 網格收斂性分析 52
4.2 重新佈線層優先之扇出型面板級封裝翹曲模擬與實驗驗證 55
4.2.1 Panel階層下翹曲之驗證與討論 55
4.2.2 Strip階層下翹曲之驗證與討論 58
4.2.3 Unit package階層下翹曲之驗證與討論 60
第五章 結論與未來展望 64
5.1 結論 64
5.2 未來研究方向 64
參考文獻 66

[1] M. M. Waldrop, “The chips are down for Moore's law,” Nature, vol. 530, pp. 144-147, Feb. 2016.
[2] W. Arden, et al. “More-than-Moore white paper,” Version, vol. 2, 2010.
[3] H. W. Liu et al., “Warpage characterization of panel fan-out (P-FO) package,” Proc. IEEE 64th Electronic Components and Technology Conference (ECTC), pp. 1750-1754, May 2014.
[4] K. Mori, S. Yamashita, T. Fukuda, M. Sekiguchi, H. Ezawa and S. Akejima, “3D Fan-out package technology with photosensitive through mold interconnects,” Proc. IEEE 69th Electronic Components and Technology Conference, pp. 1140-1145, May 2019.
[5] 江國寧, “微電子系統封裝基礎理論與應用技術,” 滄海書局, 2006.
[6] B. Freyman, and R. Pennisi, “Overmolded plastic pad array carriers (OMPAC): a low cost, high interconnect density IC packaging 139 solution for consumer and industrial electronics,” Proc. IEEE 41st Electronic Components and Technology Conference (ECTC), pp. 176-182, May 1991.
[7] M. Yasunaga, S. Baba, M. Matsuo, R. Matsushima, S. Nakao, and T. Tachikawa, “Chip scale package: A lightly dressed LSI chip,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 18, pp. 451-457, Sep. 1995.
[8] J. H. Lau, “3D IC Integration and Packaging,” New York:McGraw-Hill, 2016.
[9] J. H. Lau, “Warpage and thermal characterization of fan-out wafer level packaging,” IEEE transactions on components, packaging and manufacturing technology, vol. 7, no. 10, pp. 1729-1738, Jul. 2017.
[10] C.-T. Wang and D. Yu, “Signal and power integrity analysis on integrated fan-out PoP (InFO_PoP) technology for next generation mobile applications”, Proc. IEEE 66th Electronic Components and Technology Conference (ECTC), pp. 380-385, May 2016.
[11] J. Lau et al., “Redistribution layers (RDLs) for 2.5D/3D IC integration,” International Symposium on Microelectronics, vol. 11, no. 1, pp. 16-24, Jan. 2014.
[12] C. Riso, et al. “Advanced packaging roadmaps and government needs,” Proc. GOMACTech, Mar. 2022.
[13] X. Bie, F. Qin, Y. Shen and S. Chen, “Homogenization schemes for TSV interposer packages,” Proc. 15th International Conference on Electronic Packaging Technology (ICEPT), pp. 698-702, Aug. 2014.
[14] C. Chen, M. Su, R. Ma, Y. Zhou, J. Li and L. Cao, “Investigation of warpage for multi-die Fan-out wafer-level packaging process,” Materials, vol. 15, no. 5, pp. 1683, Feb. 2022.
[15] J. Gu, C. T. Lim, and A. A. Tay. “Simulation of mechanical response of solder joints under drop impact using equivalent layer models,” Proc. IEEE 55th Electronic Components and Technology Conference (ECTC), pp. 522-529, May 2005.
[16] G. Hu, Y. G. Kim, and J. Lim, “Micromechanical analysis of copper trace in printed circuit boards,” Microelectronics Reliability, vol. 51, no. 2, pp. 416-424, Feb. 2011.
[17] C.C. Lee, P. Huang, Y. Lin, and B. Chian, “Demonstration of an equivalent material approach for the strain-induced reliability estimation of stacked-chip packaging,” IEEE Transactions on Device and Materials Reliability, vol. 20, no. 2, pp. 475-482, May 2020.
[18] C.C. Lee, T. L. Tzeng, and P. C. Huang, “Development of equivalent material properties of microbump for simulating chip stacking packaging,” Materials, vol. 8, no. 8, pp. 5121-5137, Aug. 2015.
[19] T. Y. Tsai, “Transient submodeling analysis for board-level drop tests of electronic packages,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 30, no. 1, pp. 54-62, Jan. 2007.
[20] C. C. Lee, C. W. Wang, C. Y. Chen, “Comparison of mechanical modeling to warpage estimation of RDL-first fan-out panel-level packaging,” IEEE Transactions on Components Packaging and Manufacturing Technology, May 2022.
[21] K. Matsumoto and H. Mori, “Proposal of package structure requirements for effective cooling from the bottom side of chips (from the substrate side) aiming for a three-dimensional (3D) chip stack,” Proc. IEEE 66th Electronic Components and Technology Conference (ECTC), pp. 1867-1872, May 2016.
[22] P. Wesling, “The heterogeneous integration roadmap: enabling technology for systems of the future,” Proc. 2020 Pan Pacific Microelectronics Symposium (Pan Pacific), pp. 1-4, 2020.
[23] T. Fukushima et al., “Significant die-shift reduction and mu lED integration based on die-first fan-out wafer-level packaging for flexible hybrid electronics,” IEEE Transactions on Components Packaging and Manufacturing Technology, vol. 10, no. 8, pp. 1419-1422, Aug. 2020.
[24] M. C. Yew, M. Tsai, D. C. Hu, W. K. Yang and K. N. Chiang, “Reliability analysis of a novel fan-out type WLP,” Soldering & surface mount technology, vol. 21, no. 3, pp. 30-38, Jun. 2009.
[25] F. X. Che, K. Yamamoto, V. S. Rao and V. N. Sekhar, “Panel warpage of fan-out panel-level packaging using RDL-first technology,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 10, no. 2, pp. 304-313, Feb. 2020.
[26] F. Hou et at., “Experimental verification and optimization analysis of warpage for panel-level fan-out package,” IEEE Transactions on Components Packaging and Manufacturing Technology, vol. 7, no. 10, pp. 1721–1728, Oct. 2017.
[27] M. Su et al., “Warpage simulation and experimental verification for 320 mm × 320 mm panel level fan-out packaging based on die-first process,” Microelectronics Reliability, vol. 83, pp. 29-38, Apr. 2018.
[28] J. H. Lau et al., “Panel-level fan-out RDL-first packaging for heterogeneous integration,” IEEE Transactions on Components Packaging and Manufacturing Technology, vol. 10, no. 7, pp. 1125-1137, Jul. 2020.
[29] C. T. Ko et al., “Chip-first fan-out panel-level packaging for heterogeneous integration,” IEEE Transactions on Components Packaging and Manufacturing Technology, vol. 8, no. 9, pp. 1561-1572, Jul. 2018.
[30] J. H. Lau et al., “Hybrid substrate by fan-out RDL-first panel-level packaging,” IEEE Transactions on Components Packaging and Manufacturing Technology, vol. 11, no. 8, pp. 1301-1309, Jul. 2021.
[31] C. H. Tsai, S. W. Liu, and K. N. Chiang, “Warpage analysis of fan-out panel-level packaging using equivalent CTE,” IEEE Transactions on Device and Materials Reliability, vol. 20, no. 1, pp. 51-57, Nov. 2020.
[32] M. V. Dijk et al., “Simulation challenges of warpage for wafer- and panel level packaging,” Proc. 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), pp. 1-6, July 2020.
[33] K. H. Jung et al., “Thermal and thermomechanical behaviors of the fan-out package with embedded Ag patterns,” IEEE Transactions on Components Packaging and Manufacturing Technology, vol. 10, no. 9, pp. 1432–1437, May. 2020.
[34] C. Chen, J. C. Suhling, and P. Lall, “Improved approaches for FEA analyses of PBGA packages subjected to thermal cycling,” In International Electronic Packaging Technical Conference and Exhibition, vol. 51920, Aug. 2018
[35] Q. Wang, W Xie, and M. Ahmad, “Analysis of thermal cycling testing for a 3D integrated package with inter-chip microbumps,” International Conference on Electronic Packaging Technology, pp. 1243-1249, Aug. 2013
[36] J.H. Lau et al. “Design, materials, process, fabrication, and reliability of fan-out wafer level packaging.” IEEE Transactions on Components Packaging and Manufacturing Technology, vol. 8, no. 6, pp. 991-1002, Jun. 2018.
[37] T. Fukushima et al., “Significant die-shift reduction and mu LED integration based on die-first fan-out wafer-level packaging for flexible Hybrid Electronics,” IEEE Transactions on Components Packaging and Manufacturing Technology, vol. 10, no. 8, pp. 1419-1422, Aug. 2020.
[38] M. C. Yew, M. Tsai, D. C. Hu, W. K. Yang and K. N. Chiang, “Reliability analysis of a novel fan-out type WLP,” Soldering & surface mount technology, vol. 21, no. 3, pp. 30-38, Jun. 2009.
[39] S. Timoshenko, “Analysis of bi-material thermostats,” Journal of the Optical Society of America, vol. 11, no 1, pp. 233-255, 1925.
[40] A. I. Borovkov, I. B. Voinov, and S. A. Sidorov, “3D finite element structural analysis of peter-and-paul cathedral spire metalware,” 1703.
[41] J.H. Zhu, H.H. Gao, W.H. Zhang, Y. Zhou “A multi-point constraints based integrated layout and topology optimization design of multi-component systems,” Structural and Multidisciplinary Optimization, vol. 51 pp. 397-407, Aug. 2015.
[42] H. F. Mark, J. I. Kroschwitz, N. Bikales “In encyclopedia of polymer science and technology,” vol. 4, 3rd ed., Wiley, New York, 2003.
[43] D. U. Shah, P. J. Schubel, “Evaluation of cure shrinkage measurement techniques for thermosetting resins,” Polymer Testing, vol.29, no.6, pp.629-639, Sep. 2010.
(此全文20270823後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *