帳號:guest(18.220.35.83)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周 恬
作者(外文):Chou, Tien
論文名稱(中文):實現接觸與非接觸操控之覆晶整合紅外線與力感測單晶片
論文名稱(外文):Flip-chip Monolithically Integrated Infrared and Force Sensing Chip to Enable both Contact and Non-contact Control Interfaces
指導教授(中文):方維倫
指導教授(外文):Fang, Weileun
口試委員(中文):李昇憲
葉勝凱
口試委員(外文):Li, Sheng-Shian
Yeh, Sheng-Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033551
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:194
中文關鍵詞:CMOS-MEMS熱電式紅外線感測器電感式力感測器單晶整合覆晶接合技術多層線圈光固化 3D 列印技術
外文關鍵詞:CMOS-MEMSthermoelectric infrared sensorinductive force sensormonolithic integrationflip-chip bondingmulti-layer coilstereolithography 3D printing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:580
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
感測器隨著科技的發展與演進,除了元件逐漸微縮化之外,多功能感測整合亦為現今發展的趨勢。有鑑於此,本研究利用 CMOS 標準製程平台之光罩設計,以及微機電技術相關後製程操作,提出於單晶實現接觸及非接觸感測功能之感測晶片,以期應用於電梯按鈕之按鍵操作;另一方面,透過線圈繞線設計以及受力介面的進一步探討,將有效提升電感式觸覺感測器之靈敏度以及觀察其訊號變化趨勢。利用 CMOS 標準製程平台膜層之間堆疊的設計,熱電式紅外線感測器及電感式力感測器以水平整合的布局方式呈現,與此同時,本研究亦採用覆晶接合技術作為整體元件架構,驗證了覆晶接合技術下紅外線感測器之感測性能、紅外光之近接感測特性、以及電感式力感測器於正向壓力下之訊號變化。
With the development and evolution of technology, in addition to the gradual miniaturization of components, the integration of multi-functional sensing is also a trend of today's development. In view of this, this research uses the layout design of the CMOS standard process platform and the post-process operations related to MEMS technology, and proposes a monolithic integrated sensing chip that realizes contact and non-contact sensing functions, with a view to applying it to the operation of elevator buttons. On the other hand, through the further discussion of the coil winding design and the force interface, the sensitivity of the inductive tactile sensor will be effectively improved and the signal change trend of the inductive tactile sensor will be observed. Using the design of stacking between film layers of the CMOS standard process platform, the thermoelectric infrared sensor and the inductive force sensor are presented in a horizontally integrated layout. At the same time, this study also adopts the flip-chip bonding technology as the overall device structure to verify the sensing performance of the infrared sensor, the proximity sensing characteristics of the non-contact sensing, and the signal change of the inductive force sensor under normal force.
摘要 I
Abstract II
誌謝 III
目錄 VII
圖目錄 XI
表目錄 XXIII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 紅外線感測器應用 3
1-2-2 紅外線感測器技術回顧 4
1-2-3 力感測器應用 9
1-2-4 力感測器技術回顧 10
1-2-5 力感測器性能設計方向 15
1-3 TSMC CMOS製程平台 16
1-4 研究動機與執行方法 20
1-5 全文架構 21
第二章 接觸與非接觸操控之整合單晶片 47
2-1 元件設計動機 47
2-2 熱電式紅外線感測器設計考量 48
2-3 電感式力感測器設計考量 52
2-3-1 平面電感線圈感測原理與結構 53
2-3-2 磁性剛體材料選擇 54
2-3-3 高分子材料選擇 56
第三章 元件設計與分析 70
3-1 元件設計 70
3-1-1 感測器水平整合架構 70
3-1-2 覆晶封裝技術 72
3-2 模擬分析 74
第四章 製程與量測結果 86
4-1 製程細節討論 86
4-1-1 背向矽基材深蝕刻及正向金屬 / TMAH濕蝕刻 86
4-1-2 雷射與電性連接 89
4-1-3 高分子材料填充與磁性凸塊放置 90
4-1-4 表面形貌量測 91
4-2 元件性能量測結果 93
4-2-1 紅外線接收性能表現 94
4-2-2 觸覺受力性能表現 97
4-3 結語 100
第五章 結論與未來工作 119
5-1 結論 119
5-2 未來工作 119
5-2-1 整合單晶片感測性能提升 120
5-2-2 紅外線低壓封裝設計 121
參考文獻 128
附錄A 多層線圈觸覺感測器設計 134
A-1 多層線圈設計考量 134
A-1-1 理論分析 135
A-1-2 模擬分析 138
A-2 元件設計架構 139
A-2-1 元件設計外觀 140
A-2-2 量測結果 141
A-3 結語 142
附錄B 高分子受力介面設計 156
B-1 觸覺力感測器受力高分子介面探討 156
B-1-1 元件設計動機 156
B-1-2 模造式與3D列印光固化式受力感測介面 157
B-2 力介面設計概念 159
B-2-1 設計架構 159
B-2-2 量測結果比較 159
B-3 光固化式受力接觸介面設計改良 161
B-4 結語 162
附錄C 覆晶接合製程 176
C-1 微米固晶機操作 176
C-2 電性導通材料選擇 177
C-3 結語 179
附錄D 線圈陣列變化設計探討 184
D-1 海爾貝克陣列介紹 184
D-2 線圈設計考量 185
D-2-1 元件設計架構 185
D-2-2 量測結果比較 186
D-3 結語 188
[1] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, and R. Mahnkopf, "More-than-Moore white paper," Version, vol. 2, p. 14, 2010.
[2] G. Verhoeven, "The reflection of two fields: electromagnetic radiation and its role in (aerial) imaging," AARGNews, vol. 55, pp. 13-18, 2017.
[3] I. ThermoWorks. "https://www.thermoworks.com/ir-gun/." (accessed.
[4] M.-E. Ltd. "https://www.micro-epsilon.com/." (accessed.
[5] J. B. Ludlow and A. Mol, "The advent of digital imaging has revolutionized radiology," Oral Radiology-E-Book: Principles and Interpretation, p. 41, 2014.
[6] X. Tan et al., "Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors," Nature communications, vol. 11, no. 1, pp. 1-9, 2020.
[7] P. Wijewarnasuriya et al., "Electrical properties of Li‐doped Hg1− x Cd x Te (100) by molecular beam epitaxy," Applied physics letters, vol. 51, no. 24, pp. 2025-2027, 1987.
[8] W. Lawson, S. Nielsen, E. Putley, and A. Young, "Preparation and properties of HgTe and mixed crystals of HgTe-CdTe," Journal of Physics and Chemistry of Solids, vol. 9, no. 3-4, pp. 325-329, 1959.
[9] G. Cohen‐Solal and Y. Riant, "Epitaxial (CdHg) Te infrared photovoltaic detectors," Applied Physics Letters, vol. 19, no. 10, pp. 436-438, 1971.
[10] F. Haenschke, E. Kessler, U. Dillner, A. Ihring, U. Schinkel, and H.-G. Meyer, "A new high detectivity room temperature linear thermopile array with a D* greater than 2× 10 9 cmHz 1/2/W based on organic membranes," Microsystem technologies, vol. 19, no. 12, pp. 1927-1933, 2013.
[11] M. Müller, W. Budde, R. Gottfried-Gottfried, A. Hübel, R. Jähne, and H. Kück, "A thermoelectric infrared radiation sensor with monolithically integrated amplifier stage and temperature sensor," Sensors and Actuators A: Physical, vol. 54, no. 1-3, pp. 601-605, 1996.
[12] I. Kasalynas et al., "Design and performance of a room-temperature terahertz detection array for real-time imaging," IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 2, pp. 363-369, 2008.
[13] M. Shankar, J. B. Burchett, Q. Hao, B. D. Guenther, and D. J. Brady, "Human-tracking systems using pyroelectric infrared detectors," Optical engineering, vol. 45, no. 10, p. 106401, 2006.
[14] A. Tanaka et al., "Infrared focal plane array incorporating silicon IC process compatible bolometer," IEEE transactions on Electron Devices, vol. 43, no. 11, pp. 1844-1850, 1996.
[15] A. Dehe, K. Fricke, and H. Hartnagel, "Infrared thermopile sensor based on AlGaAs—GasAs micromachining," Sensors and Actuators A: Physical, vol. 47, no. 1-3, pp. 432-436, 1995.
[16] S. Allison, R. Smith, D. Howard, C. Gonzalez, and S. Collins, "A bulk micromachined silicon thermopile with high sensitivity," Sensors and Actuators A: Physical, vol. 104, no. 1, pp. 32-39, 2003.
[17] T.-W. Shen, K.-C. Chang, C.-M. Sun, and W. Fang, "Performance enhance of CMOS-MEMS thermoelectric infrared sensor by using sensing material and structure design," Journal of Micromechanics and Microengineering, vol. 29, no. 2, p. 025007, 2019.
[18] P.-S. Lin, T.-W. Shen, K.-C. Chan, and W. Fang, "CMOS MEMS thermoelectric infrared sensor with plasmonic metamaterial absorber for selective wavelength absorption and responsivity enhancement," IEEE Sensors Journal, vol. 20, no. 19, pp. 11105-11114, 2020.
[19] K. Miller and M. Curet, "Intuitive Surgical: an overview," Robotic-Assisted Minimally Invasive Surgery, pp. 3-11, 2019.
[20] A. Inc. "https://support.apple.com/en-mn/guide/airpods/devb2c431317/web." (accessed.
[21] L. Alps Alpine Co. "https://www.alpsalpine.com/e/news_release/2019/0328_02.html." (accessed.
[22] Y.-C. Huang et al., "Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors," Nature Electronics, vol. 3, no. 1, pp. 59-69, 2020.
[23] C.-T. Ko, S.-H. Tseng, and M. S.-C. Lu, "A CMOS micromachined capacitive tactile sensor with high-frequency output," Journal of Microelectromechanical Systems, vol. 15, no. 6, pp. 1708-1714, 2006.
[24] R. Surapaneni, Q. Guo, Y. Xie, D. Young, and C. Mastrangelo, "A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes," Journal of Micromechanics and Microengineering, vol. 23, no. 7, p. 075004, 2013.
[25] M. Jayalakshmi and K. Balasubramanian, "Simple capacitors to supercapacitors-an overview," Int. J. Electrochem. Sci, vol. 3, no. 11, pp. 1196-1217, 2008.
[26] W.-C. Lai, M.-L. Hsieh, and W. Fang, "Electric Modulation on the Sensitivity and Sensing Range of CMOS-MEMS Tactile Sensor by Using the PDMS Elastomer Fill-In," IEEE Sensors Journal, vol. 21, no. 5, pp. 5828-5835, 2020.
[27] H. Takahashi, A. Nakai, N. Thanh-Vinh, K. Matsumoto, and I. Shimoyama, "A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping," Sensors and Actuators A: Physical, vol. 199, pp. 43-48, 2013.
[28] N. Thanh-Vinh, N. Binh-Khiem, H. Takahashi, K. Matsumoto, and I. Shimoyama, "High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers," Sensors and Actuators A: Physical, vol. 215, pp. 167-175, 2014.
[29] H. Wang et al., "Robust and high-performance soft inductive tactile sensors based on the Eddy-current effect," Sensors and Actuators A: Physical, vol. 271, pp. 44-52, 2018.
[30] S.-K. Yeh, H.-C. Chang, and W. Fang, "Development of CMOS MEMS inductive type tactile sensor with the integration of chrome steel ball force interface," Journal of Micromechanics and Microengineering, vol. 28, no. 4, p. 044005, 2018.
[31] H.-C. Chang et al., "Magnetostrictive type tactile sensor based on metal embedded polymer architecture," in 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), 2014: IEEE, pp. 1189-1192.
[32] M.-L. Hsieh, S.-K. Yeh, J.-H. Lee, M.-C. Cheng, and W. Fang, "CMOS-MEMS capacitive tactile sensor with vertically integrated sensing electrode array for sensitivity enhancement," Sensors and Actuators A: Physical, vol. 317, p. 112350, 2021.
[33] S.-Y. Tu, W.-C. Lai, and W. Fang, "Vertical integration of capacitive and piezo-resistive sensing units to enlarge the sensing range of CMOS-MEMS tactile sensor," in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 2017: IEEE, pp. 1048-1051.
[34] T. Kawasetsu, T. Horii, H. Ishihara, and M. Asada, "Flexible tri-axis tactile sensor using spiral inductor and magnetorheological elastomer," IEEE Sensors Journal, vol. 18, no. 14, pp. 5834-5841, 2018.
[35] J. A. Dobrzynska and M. Gijs, "Polymer-based flexible capacitive sensor for three-axial force measurements," Journal of Micromechanics and Microengineering, vol. 23, no. 1, p. 015009, 2012.
[36] G. K. Fedder, "CMOS-based sensors," in SENSORS, 2005 IEEE, 2005: IEEE, p. 4 pp.
[37] D. Xu, Y. Wang, B. Xiong, and T. Li, "MEMS-based thermoelectric infrared sensors: A review," Frontiers of Mechanical Engineering, vol. 12, no. 4, pp. 557-566, 2017.
[38] S. A. O'Shaughnessy, M. A. Hebel, S. R. Evett, and P. D. Colaizzi, "Evaluation of a wireless infrared thermometer with a narrow field of view," Computers and Electronics in Agriculture, vol. 76, no. 1, pp. 59-68, 2011.
[39] F. W. Grover, "The calculation of the inductance of single-layer coils and spirals wound with wire of large cross section," Proceedings of the Institute of Radio Engineers, vol. 17, no. 11, pp. 2053-2063, 1929.
[40] F. W. Grover, Inductance calculations: working formulas and tables. Courier Corporation, 2004.
[41] E. B. Rosa, Calculation of the self-inductance of single-layer coils (no. 31). US Government Printing Office, 1906.
[42] E. B. Rosa, On the geometrical mean distances of rectangular areas and the calculation of self-inductance (no. 47). US Government Printing Office, 1907.
[43] H. Greenhouse, "Design of planar rectangular microelectronic inductors," IEEE Transactions on parts, hybrids, and packaging, vol. 10, no. 2, pp. 101-109, 1974.
[44] C. Chen et al., "Planar micro-nano-coils for electrically driving liquid crystal microlenses based on wireless power transmission," in MIPPR 2015: Multispectral Image Acquisition, Processing, and Analysis, 2015, vol. 9811: International Society for Optics and Photonics, p. 981105.
[45] A. Zolfaghari, A. Chan, and B. Razavi, "Stacked inductors and transformers in CMOS technology," IEEE Journal of Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
[46] C.-C. Tang, C.-H. Wu, and S.-I. Liu, "Miniature 3-D inductors in standard CMOS process," IEEE Journal of solid-state circuits, vol. 37, no. 4, pp. 471-480, 2002.
[47] A. Areef Billah, "Investigation of multiferroic and photocatalytic properties of Li doped BiFeO3 nanoparticles prepared by ultrasonication," 2016.
[48] F. Fiorillo, G. Bertotti, C. Appino, and M. Pasquale, "Soft magnetic materials," Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1-42, 1999.
[49] G. M. Moreton, "The design and development of a planar coil sensor for angular displacements," Cardiff University, 2018.
[50] J. D. Kraus, "Electromagnetics, 1992," ed: McGraw Hill, pg.
[51] J. Vaicekauskaite, P. Mazurek, S. Vudayagiri, and A. L. Skov, "Mapping the mechanical and electrical properties of commercial silicone elastomer formulations for stretchable transducers," Journal of Materials Chemistry C, vol. 8, no. 4, pp. 1273-1279, 2020.
[52] S.-K. Yeh, J.-H. Lee, and W. Fang, "On the detection interfaces for inductive type tactile sensors," Sensors and Actuators A: Physical, vol. 297, p. 111545, 2019.
[53] A. Graf, M. Arndt, M. Sauer, and G. Gerlach, "Review of micromachined thermopiles for infrared detection," Measurement Science and Technology, vol. 18, no. 7, p. R59, 2007.
[54] Z. Zhang and C. Wong, "Recent advances in flip-chip underfill: materials, process, and reliability," IEEE transactions on advanced packaging, vol. 27, no. 3, pp. 515-524, 2004.
[55] R. D. Hudson, Infrared system engineering. Wiley-Interscience New York, 1969.
[56] H. A. Wheeler, "Simple inductance formulas for radio coils," Proceedings of the institute of Radio Engineers, vol. 16, no. 10, pp. 1398-1400, 1928.
[57] S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, "Simple accurate expressions for planar spiral inductances," IEEE Journal of solid-state circuits, vol. 34, no. 10, pp. 1419-1424, 1999.
[58] T. Reissman, J.-S. Park, and E. Garcia, "Multilayer, stacked spiral copper inductors on silicon with micro-Henry inductance using single-level lithography," Active and passive electronic components, vol. 2012, 2012.
[59] J.-H. Lee, S.-K. Yeh, and W. Fang, "Monolithic/vertical integration of piezo-resistive tactile sensor and inductive proximity sensor using CMOS-MEMS technology," in 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), 2019: IEEE, pp. 826-829.
[60] A. San-Millan, "Design of a teleoperated wall climbing robot for oil tank inspection," in 2015 23rd Mediterranean Conference on Control and Automation (MED), 2015: IEEE, pp. 255-261.
[61] J. Masi, "Overview of Halbach magnets and their applications," Electrical Manufacturing and Coil Winding Expo, vol. 2013, pp. 134-139, 2010.

(此全文20250818後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *