帳號:guest(3.149.24.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊家閎
作者(外文):Yang, Chia-Hung
論文名稱(中文):新穎邊際電極電容式濕度感測系統之設計與實現
論文名稱(外文):Design and Implementation of Novel Fringe-Electrode Capacitive Humidity Sensing System
指導教授(中文):方維倫
指導教授(外文):Fang, Wei-Leun
口試委員(中文):李昇憲
蘇旺申
口試委員(外文):LI, Sheng-Shian
Su, Wang-Shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033546
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:113
中文關鍵詞:CMOS-MEMS電容式濕度計加熱器二極體溫度計聚亞醯胺
外文關鍵詞:CMOS-MEMSCapacitive humidity sensorHeaterDiode based temperature sensorPolyimide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:552
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用TSMC提供之0.18 μm 1P6M CMOS標準製程平台,實現一擁有快速反應時間之濕度感測系統晶片(SoC, system on chip),該系統整合溫度計、微型加熱器用以提升濕度計之性能。本研究將感測電極設計成邊際電容感測,該電極設計容易與柱狀感濕結構結合,並隔絕垂直整合微型加熱器之電性干擾。陣列式柱狀感濕結構設計可增加水氣接觸面積,進而使濕度計反應時間縮短。本研究將一微型加熱器與該濕度計垂直整合,可對濕度計提供排濕、重置的功能,使濕度計可應用於更多情境,並透過將微型加熱器下方之矽基材移除,可使該微型加熱器之加熱效果提升、所需功耗下降。本研究同時單晶片整合二極體式溫度計,可提供濕度計進行相對濕度量測時做校正。從本研究實驗量測結果可得知,該濕度計於氧電漿蝕刻後反應時間縮短約40%;微型加熱器可有效使該濕度計升溫(1.90 oC/mW);二極體式溫度計之整合(1.66 mV/ oC)可使該濕度計解讀出更精確的相對溼度值,該濕度計之邊際電容感測電極與平行板感測電極相比,其靈敏度較大且較不易受垂直整合的加熱器影響。
This study demonstrates a novel humidity sensing system with fringe electrodes and polyimide pillar array as humidity sensing structure. The humidity sensing system are implemented by the TSMC 0.18μm 1P6M CMOS platform and further monolithically integrated with temperature sensor and micro heater.
The presented humidity sensing unit has pillar polyimide array design to enhance the moisture absorption to improve the response time. The fringe sensing electrodes design has better sensing sensitivity compare to the traditional parallel sensing electrodes. The vertical integration of mi-cro heater can prevent moisture condensation and monolithic integration of temperature sensor can be used for signal calibration.
After the humidity sensing chip is realized, the humidity test, func-tion of micro heater and thermometer has been measured separately. From the measurement result, the humidity sensing chip has good performance in signal. Both the function of thermometer and micro heater are con-tributing to humidity sensing. The humidity sensing chip has been suc-cessfully implemented on the CMOS platform.
摘要 I
Abstract II
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 濕度計發展現況與簡介 3
1-3 相關文獻回顧 5
1-3-1 相對濕度感測機制分類 7
1-3-2 電容式濕度感測材料介紹 10
1-3-3 CMOS-MEMS製程 13
1-4 研究動機與目標 15
第二章 濕度感測系統設計與分析 30
2-1 TSMC 0.18µm 1P6M CMOS 製程平台 30
2-2 電容式溼度計初始電容與靈敏度 31
2-3 電容式濕度計反應時間 35
2-4 二極體溫度計原理 37
2-5 微型加熱器設計與運作原理 38
2-6 感測系統之設計與模擬 39
2-6-1 整體濕度感測系統設計 39
2-6-2 各元件相關模擬結果 42
第三章 晶片後製程結果討論 55
3-1 晶片佈局 55
3-2 晶片CMOS 後製程 56
3-3 晶片後製程結果 60
第四章 量測結果與討論 72
4-1 濕度計靈敏度量測 72
4-1-1 濕度計線性度探討 73
4-1-2 濕度計不同電極配置之比較 74
4-2 濕度計反應時間量測 75
4-3 加熱器性能量測 77
4-3-1 加熱器溫度分布量測 78
4-3-2 加熱器動態響應量測 79
4-4 溫度計性能量測與整合濕度計之量測 80
4-4-1 絕對濕度之量測 81
4-5 濕度計整合加熱器之量測 82
第五章 結論與未來工作 99
5-1 結論 99
5-2 未來工作 100
參考文獻 108
[1] NEWORKWORLD., https://www.networkworld.com/
[2] A. Atmani, I. Kandrouch, N. Hmina, and H. Chaoui, “Big Data for Internet of Things: A Survey on IoT Frameworks and Platforms,” Switzerland: Springer, 2019.
[3] eeNewsEUROPE., https://www.eenewseurope.com/
[4] Sensirion AG, EUROPEAN PATENT, NO. EP 3239681A1. 2017.
[5] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and W. Fang, “Design and application of a metal wet-etching post-process for the improve-ment of CMOS-MEMS capacitive sensors,” Journal of Microme-chanics and Microengineering, 19, pp 105017, 2009.
[6] W. Fang, S.-S. Li, C.-L. Cheng, C.-I. Chang, W.-C. Chen, Y.-C. Liu,
M.-H. Tsai, and C. Sun, “CMOS MEMS: A key technology towards
the “More than Moore” era,” 2013 Transducers & Eurosensors XXVII:
The 17th International Conference on Solid-State Sensors, Actuators
and Microsystems, pp 2513-2518, 2013.
[7] SCIENTIFICAMERI-CAN.,https://www.scientificamerican.com/article/bring-science-home-hair-hygrometer/
[8] ENIS-CHOOL.,http://www.eniscuola.net/en/mediateca/hair-hygrometer/
[9] ENGINEERINGTOOLBOX., https://www.engineeringtoolbox.com/
[10] Sensirion, Inc., https://www.sensirion.com/en/
[11] MichellInstru-ment,Inc.,http://www.michell.com/uk/products/h8000.htm
[12] BOSCH, Inc., https://www.bosch-home.com.tw/
[13] Samsung, Inc., https://www.samsung.com/tw/
[14] Rooti Labs., https://www.rootilabs.com/
[15] Yole Development Co., http://www.yole.fr/Reports.aspx
[16] J. Fraden, Handbook of modern sensors: Physics Design, and Appli-cations, 5th ed., Germany: Springer, 2016.
[17] B. Sorli, F.-P. Delannoy, A.-G. Foucaran. and Boyer, “Fast humidity sensor for high range 80–95% RH” Sensors and Actuators A: Physi-cal,100, pp24-31, 2002.
[18] M. Kimura, “Absolute-humidity sensing independent of the ambient temperature,” Sensors and Actuators A: Physical, Volume 55, Issue 1, 1996.
[19] J. Fraden, Handbook of Modern Sensors: Physics Designs, and Ap-plications, 4th ed., Germany: Springer, 2010.
[20] Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A.-G. MacDiarmid, and Y. Wei, “Highly Sensitive and Stable Humidity Nano sensors Based on LiCl Doped TiO2 Electro spun Nanofibers,” Journal of the American Chemical Society, 130, pp. 5036-5037, 2008.
[21] C.-L. Dai, M.-C. Liu, F.-S. Chen, C.-C. Wu, and M.-W. Chang, “A nanowire WO3 humidity sensor integrated with micro-heater and in-verting amplifier circuit on chip manufactured using CMOS-MEMS technique,” Sensors and Actuators B: Chemical, 123, pp 896-901, 2007.
[22] P.-G. Su, C.-J. Ho, Y.-L. Sun, and I. C. Chen, “A micromachined re-sistive type humidity sensor with a composite material as sensitive film,” Sensors and Actuators B: Chemical, 113, pp 837-842, 2006.
[23] C.-D. Feng, S.-L. Sun, H. Wang, C.-U. Segre, and J.-R. Stetter, “Hu-midity sensing properties of Nation and sol-gel derived SiO2/Nafion composite thin films,” Sensors and Actuators B: Chemical, 40, pp 217-222, 1997.
[24] J. Wang, B. Xu, J. Zhang, G. Liu, T. Zhang, F. Qiu, and M. Zhao, “Humidity sensors of composite material of nanocrystal BaTiO3 and polymer,” Journal of Materials Science Letters, 18, pp 1603-1605, 1999.
[25] C.-Y. Lee, G.-B. Lee, “Humidity Sensors: A Review” SENSOR LETTERS Vol. 3, 1–14, 2005.
[26] S. Chatzandroulis, A. Tserepi, D. Goustouridis, P. Normand, and D. Tsoukalas, “Fabrication of single crystal Si cantilevers using a dry re-lease process and application in a capacitive type humidity sensor,” Microelectronic Engineering, 61, pp 955-961, 2002.
[27] Y. Kim, B. Jung, H. Lee, H. Kim, K. Lee, and H. Park, "Capacitive humidity sensor design based on anodic aluminum oxide," Sensors and Actuators B: Chemical, 141, pp 441-446, 2009.
[28] V.-K. Khanna, R.-K. Nahar, Effect of moisture on the dielectric prop-erties of porous alumina films, Sensors and Actuators, Volume 5, Is-sue 3, Pages 187-198, 1984.
[29] C.-L. Hsieh, P.-H. Lo, and W. Fang, “Dual-layer Nano porous anodic aluminum oxide with embedded electrodes for capacitive relative
humidity sensor,” TRANSDUCERS & EUROSENSORS XXVII, pp 2572-2575, 2013.
[30] NASA.Gov.,https://www.nasa.gov/topics/technology/features/aerogels.html
[31] V. P. J. Chung, C.-L. Cheng, M.-C. Yip, and W. Fang, “A CMOS ca-pacitive vertical-parallel-plate-array humidity sensor with RF-aerogel fill-in for sensitivity and response time improvement,” IEEE Interna-tional Conference on Micro Electro Mechanical Systems (MEMS), pp 767-770, 2015.
[32] T. Boltshauser and H. Baltes, “Capacitive humidity sensors in SACMOS technology with moisture absorbing photosensitive polyi-mide,” Sensors and Actuators A: Physical, 26, pp 509-512, 1991.
[33] T. Boltshauser, C. Azeredo Leme, and H. Baltes, "High sensitivity CMOS humidity sensors with on-chip absolute capacitance meas-urement system," Sensors and Actuators B: Chemical, 15, pp 75- 80, 1993.
[34] U. Kang and K.-D. Wise, "A high-speed capacitive humidity sensor with on-chip thermal reset," IEEE Transactions on Electron Devices, vol. 47, no. 4, pp 702-710, 2000.
[35] H. Baltes, O. Brand, G.-K. Fedder, C. Hierold, J.-G. Korvink, and O. Tabata, CMOS-MEMS: Advanced Micro and Nanosystems, 1st ed., Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008.
[36] O. Brand, “Fabrication Technology,” in CMOS—MEMS, Wiley-VCH Verlag GmbH, pp 1-67, 2008.
[37] T. Scheitera, H.Kapelsa, K.-G. Oppermanna, M. Stegera, C.Hierold, W.-M. Werner, H.-J. Timme, “Full integration of a pressure-sensor system into a standard BiCMOS process,” Sensors and Actuators A: Physical, 67, pp 211-214,1998.
[38] G.-K. Fedder, “CMOS-based sensors,” IEEE Sensors, pp 125-128, 2005.
[39] C.-L. Dai, “A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS–MEMS technique,” Sensors and Actuators B: Chemical, pp 375- 380, 2007.
[40] J.-B. Hasted, Aqueous Dielectrics, London, UK: Chapman and Hall, 1973.
[41] Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, and W. Fang, "Devel-opment of a CMOS-Based Capacitive Tactile Sensor with Adjustable Sensing Range and Sensitivity Using Polymer Fill-In," Journal of Microelectromechanical Systems, 20, pp 119-127, 2011.
[42] H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica, 31, pp 401-406, 1965.
[43] H. Shibata, M. Ito, M. Asakursa, and K. Watanabe, "A digital hy-grometer using a polyimide film relative humidity sensor," IEEE Transactions on Instrumentation and Measurement (TIM), 45, pp 564-569, 1996.
[44] N. Lazarus and G.-K. Fedder, “Designing a robust high-speed CMOS-MEMS capacitive humidity sensor,” Journal of Microme-chanics and Microengineering, 22, pp 085021, 2012.
[45] J. Seo and H. Han, “Water Diffusion Studies in Polyimide Thin Films,” Journal of Applied Polymer Science, 82, pp 731–737, 2001.
[46] M. Mansoor, I. Haneef, S. Akhtar, A. De Luca, and F. Udrea, “Silicon diode temperature sensors—A review of applications,” Sensors Actu-ators A, vol. 232, pp 63-74, 2015.
[47] E+E Elektronik, Inc., https://www.epluse.com/
[48] STMmicroelectronics Pte Ltd, US PATENT, NO. US 9027400B2. 2015.
[49] Robert Bosch GmbH, US PATENT, NO. US 20210131897 A1, 2021.
[50] Choi, Jin and Kim, Tae, “Humidity Sensor Using an Air Capacitor,” Transactions on Electrical and Electronic Materials, 2013.
[51] Central Weather Bureau., https://www.cwb.gov.tw/
[52] R.-G. Steadman, “A Universal Scale of Apparent Temperature,” Journal of Climate and Applied Meteorology, 1984.
[53] M. Mansoor, I. Haneef, S. Akhtar, M. A. Rafiq, S. Z. Ali and F. Udrea, “SOI CMOS multi-sensors MEMS chip for aerospace applications,” SENSORS 2014 IEEE, pp. 1204-1207, 2014.
[54] F. Mayer, A. Haberli, H. Jacobs, G. Ofner, O. Paul and H. Baltes, “Single-chip CMOS anemometer,” International Electron Devices Meeting, IEDM Technical Digest, pp. 895-898, 1997.
[55] F. Mayer, O. Paul and H. Baltes, “Flip-chip packaging for thermal CMOS anemometers,” Proceedings IEEE The Tenth Annual Interna-tional Workshop on Micro Electro Mechanical Systems, pp. 203-208, 1997.
(此全文20250816後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *