帳號:guest(3.141.30.159)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林威辰
作者(外文):Lin, Wei-Chen
論文名稱(中文):應用多尺度變分有限元素法於鯊魚仿生皮齒結構流場阻力分析與初步流固耦合分析架構探討
論文名稱(外文):Flow Analysis for Bionic Shark Denticle Structure by the Variational Multiscale Finite Element Method and Preliminary Investigation on Fluid Structure Interaction
指導教授(中文):黃琮暉
指導教授(外文):Huang, Tsung-Hui
口試委員(中文):陳柏宇
楊珮良
沈聖峰
口試委員(外文):Chen, Po-Yu
Yang, Patricia J.
Shen, Sheng-Feng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033543
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:77
中文關鍵詞:有限元素法納維爾史托克方程式鯊魚皮齒結構多尺度變分渦流模擬流固耦合分析
外文關鍵詞:Finite Element MethodIncompressible Navier-Stokes EquationsShark DenticleVariational Multiscale Large Eddy SimulationFluid Structure Interaction Analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:373
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鯊魚表皮皮齒之特殊結構被認為是鯊魚能夠擁有高流速的主要原因之一,其流體流經皮齒之流場能展示其降阻能力。為了調查鯊魚皮齒結構中流體行為與阻力在不同雷諾數下的變化情形,本研究透過使用開源有限元素平台FEniCS來模擬納維爾史托克(Navier-Stokes)方程式。在FEniCS平台下,我們可以便捷的實施伽遼金有限元素法(Galerkin Finite Element Method)並引入多尺度變分法(Variational Multiscale Method)來穩定方程式中的平流項(Advection Term),同時多尺度變分架構也提供了渦流模擬所需之細節項。目前本研究針對光滑球體、鯊魚仿生單一皮齒結構於不同流場下進行阻力分析與參數化研究,接著針對真實鯊魚皮齒結構—燈籠鯊(Lantern Shark)、長鬚棘鮫(Mandarin Dogfish Shark)、尖吻鯖鯊(Mako Shark)等三種鯊魚之鯊魚皮齒進行流場參數模擬,探討各個參數對於固體表面減阻效果的不同,作為未來進行鯊魚表皮阻力分析的參照資料;本文最後章節初步探討流固耦合基礎架構分析提供給作為開源有限元素法軟體FEniCS使用者未來的研究參考。
The unique geometry of the microstructure on the shark-skin surface, known as denticles, is the main reason sharks can swim at high speed. In order to discover the relationship between the complicated denticle structures with the associated flow pattern, we perform a series of parameter studies, including the drag force analysis and flow stability test under different denticle geometry. In this research, the incompressible Navier-Stokes (N-S) equations are chosen as the fluid model; the Galerkin finite element method with variational multiscale method (VMS) is adapted. The VMS aims to stabilize the instability due to the advection in the N-S equations, as well as introduces the fine-scale terms that act as the large eddy simulation (LES) in the fluid model. The framework was implemented under the open-source finite element platform, called FEniCS. We first perform the numerical testing on the flow over a sphere and a bionic shark-skin structure to investigate the flow pattern under different Reynolds number, which validates the effectiveness of the proposed framework. Then, a parameter study is employed for different shark species with associated unique shark denticle geometry. The drag-reduction effects among different shark-skin are revealed, and can be used as a reference for future design on the bio-inspired structure. Finally, the last chapter preliminarily discusses the analysis of the fluid-structure interaction within FEniCS.
摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 流體阻力之成形原因 4
1.3 文獻回顧 4
1.3.1 仿生結構表面流體研究分析概況 5
1.3.2 仿生減阻研究與應用 12
1.4 研究動機 14
第二章 基礎理論 16
2.1 納維爾史托克(NS)方程和雷諾數(Re)的影響 16
2.2 NS方程多尺度變分穩定有限元方法(VMS-FEM) 17
2.3 數值流程 20
第三章 鯊魚皮齒結構數值模型 22
3.1 真實鯊魚皮齒結構 22
3.1.1 燈籠鯊(Lantern Shark) 24
3.1.2 長鬚棘鮫(Mandarin Dogfish Shark) 24
3.1.3 尖吻鯖鯊(Mako Shark) 25
3.2 數值設定 26
3.2.1 邊界條件 26
3.2.2 阻力以及阻力係數計算方式 28
第四章 皮齒結構流場特性分析 29
4.1 幾何模型阻力驗證 29
4.1.1 光滑球體流場幾何模型 29
4.1.2 光滑球體流場阻力分析 30
4.2 鯊魚流場阻力分析 34
4.2.1 鯊魚仿生單一皮齒結構流場阻力分析 36
4.2.2 真實鯊魚皮齒結構流場阻力分析 40
4.2.2.1 燈籠鯊(Lantern Shark) 40
4.2.2.2 長鬚棘鮫(Mandarin Shark) 42
4.2.2.3 尖吻鯖鯊(Mako Shark) 44
4.2.3 流體控制穩定性分析 46
第五章 流固耦合模擬架構開發 49
5.1 流固耦合模擬簡介 49
5.1.1 任意拉格朗日-歐拉描述法簡介 50
5.1.2 流固耦合統御方程式 52
5.1.2.1 拉格朗日結構方程式 52
5.1.2.2 歐拉流體方程式 54
5.2 流固耦合數值案例 55
5.2.1 幾何模型 55
5.2.2 結果與討論 57
第六章 結論與未來研究方向 60
6.1 結論 60
6.2 未來研究方向 61
參考文獻 62
附錄A(Appendix A) 67
附錄B(Appendix B) 76

[1]M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, "The FEniCS project version 1.5," Archive of Numerical Software, vol. 3, no. 100, 2015.
[2]A. Logg, K.-A. Mardal, and G. Wells, Automated Solution of Differential Equations by The Finite Element Method: The FEniCS Book. Springer Science & Business Media, 2012.
[3]L. Ivanović, A. Vencl, B. Stojanovic, and B. Markovic, "Biomimetics Design for Tribological Applications," Tribology in Industry, 2018.
[4]Y. Wan, "Drag Reduction Experiment and Mechanism Analysis of Concave Groove Needle," China Mechanical Engineering, vol. 24, no. 07, p. 922, 2013.
[5]T. Sullivan and F. Regan, "The Characterization, Replication and Testing of Dermal Denticles of Scyliorhinus Canicula for Physical Mechanisms of Biofouling Prevention," Bioinspiration & Biomimetics, vol. 6, no. 4, 2011.
[6]A. Boomsma and F. Sotiropoulos, "Direct Numerical Simulation of Sharkskin Denticles in Turbulent Channel Flow," Physics of Fluids, Article vol. 28, no. 3, p. 19, 2016.
[7]M. J. Walsh, "Riblets as a Viscous Drag Reduction Technique," AIAA Journal, Article vol. 21, no. 4, pp. 485-486, 1983.
[8]M. J. Walsh, "Turbulent Boundary Layer Drag Reduction Using Riblets," in 20th Aerospace Sciences Meeting, 1982.
[9]M. J. Walsh and A. Lindemann, "Optimization and Application of Riblets for Turbulent Drag Reduction," in 22nd Aerospace Sciences Meeting, 1984.
[10]D. G. Clark, "Boundary Layer Flow Visualisation Patterns on a Riblet Surface," Dordrecht, 1990.
[11]Y. P. Tang and D. G. Clark, "On Near-Wall Turbulence-Generating Events in a Turbulent Boundary-Layer on a Riblet Surface," Applied Scientific Research, vol. 50, no. 3-4, pp. 215-232, 1993.
[12]Y. Suzuki and N. Kasagi, "Turbulent Drag Reduction Mechanism Above a Riblet Surface," AIAA Journal, vol. 32, no. 9, pp. 1781-1790, 1994.
[13]N. Kasagi and K. Nishino, "Probing Turbulence with Three-Dimensional Particle-Tracking Velocimetry," Experimental thermal and fluid science, vol. 4, no. 5, pp. 601-612, 1991.
[14]N. Kasagi and Y. Sata, "Recent Developments in Three-Dimensional Particle Tracking Velocimetry," in Flow Visualization VI: Springer, pp. 832-837, 1992.
[15]D. W. Bechert, M. Bruse, W. Hage, J. G. T. VanderHoeven, and G. Hoppe, "Experiments on Drag-Reducing Surfaces and Their Optimization with an Adjustable Geometry," Journal of Fluid Mechanics, vol. 338, pp. 59-87, 1997.
[16]S. J. Lee and S. H. Lee, "Flow Field Analysis of a Turbulent Boundary Layer Over a Riblet Surface," Experiments in Fluids, vol. 30, no. 2, pp. 153-166, 2001.
[17]B. Dean and B. Bhushan, "Shark-Skin Surfaces for Fluid-Drag Reduction in Turbulent Flow: a Review," Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 368, no. 1933, pp. 5737-5737, 2010.
[18]Q. S. Bai, J. X. Bai, X. P. Meng, C. C. Ji, and Y. C. Liang, "Drag Reduction Characteristics and Flow Field Analysis of Textured Surface," Friction, vol. 4, no. 2, pp. 165-175, 2016.
[19]J. Cui, W. Li, and W.-H. Lam, "Numerical Investigation on Drag Reduction with Superhydrophobic Surfaces by Lattice-Boltzmann Method," Computers & Mathematics with Applications, vol. 61, no. 12, pp. 3678-3689, 2011.
[20]E. V. Bacher and C. R. Smith, "Turbulent Boundary-Layer Modification by Surface Riblets," AIAA Journal, vol. 24, no. 8, pp. 1382-1385, 1986.
[21]K. Feld, A. N. Kolborg, C. M. Nyborg, M. Salewski, J. F. Steffensen, and K. Berg-Sorensen, "Dermal Denticles of Three Slowly Swimming Shark Species: Microscopy and Flow Visualization," Biomimetics, vol. 4, no. 2, p. 38, 2019.
[22]C. Guo, Q. Tian, H. Wang, J. Sun, L. Du, M. Wang, and D. Zhao, "Roller Embossing Process for The Replication of Shark-Skin-Inspired Micro-Riblets," Micro & Nano Letters, vol. 12, no. 7, pp. 439-444, 2017.
[23]A. G. Domel, M. Saadat, J. C. Weaver, H. Haj-Hariri, K. Bertoldi, and G. V. Lauder, "Shark Skin-Inspired Designs That Improve Aerodynamic Performance," Journal of the Royal Society Interface, vol. 15, no. 139, 2018.
[24]A. G. Domel, M. Saadat, J. C. Weaver, H. Haj-Hariri, K. Bertoldi, and G. V. Lauder, "Shark Skin-Inspired Designs that Improve Aerodynamic Performance," Journal of the Royal Society Interface, vol. 15, no. 139, p. 20170828, 2018.
[25]R. Sanders, B. Rushall, H. Toussaint, J. Stager, and H. Takagi, "Bodysuit Yourself, but First Think About It," American Swimming Magazine, vol. 5, pp. 23-32, 2001.
[26]M. V. Ankhelyi, D. K. Wainwright, and G. V. Lauder, "Diversity of Dermal Denticle Structure in Sharks: Skin Surface Roughness and Three‐Dimensional Morphology," Journal of morphology, vol. 279, no. 8, pp. 1132-1154, 2018.
[27]T. J. Hughes, L. P. Franca, and M. Balestra, "A New Finite Element Formulation for Computational Fluid Dynamics: V. Circumventing the Babuška-Brezzi Condition: A Stable Petrov-Galerkin Formulation of The Stokes Problem Accommodating Equal-Order Interpolations," Computer Methods in Applied Mechanics and Engineering, vol. 59, no. 1, pp. 85-99, 1986.
[28]T. J. Hughes, M. Mallet, and M. Akira, "A New Finite Element Formulation for Computational Fluid Dynamics: II. Beyond SUPG," Computer Methods in Applied Mechanics and Engineering, vol. 54, no. 3, pp. 341-355, 1986.
[29]T. J. Hughes, L. P. Franca, and M. Mallet, "A New Finite Element Formulation for Computational Fluid Dynamics: I. Symmetric Forms of The Compressible Euler and Navier-Stokes Equations and The Scond Law of Thermodynamics," Computer Methods in Applied Mechanics and Engineering, vol. 54, no. 2, pp. 223-234, 1986.
[30]L. P. Franca and S. L. Frey, "Stabilized Finite Element Methods: II. The Incompressible Navier-Stokes Equations," Computer Methods in Applied Mechanics and Engineering, vol. 99, no. 2-3, pp. 209-233, 1992.
[31]T. J. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation, 2012.
[32]T. J. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy, "The Variational Multiscale Method—A Paradigm for Computational Mechanics," Computer Methods in Applied Mechanics and Engineering, vol. 166, no. 1-2, pp. 3-24, 1998.
[33]Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali, and G. Scovazzi, "Variational Multiscale Residual-Based Turbulence Modeling for Large Eddy Simulation of Incompressible Flows," Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 1-4, pp. 173-201, 2007.
[34]Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes, "Isogeometric Variational Multiscale Modeling of Wall-Bounded Turbulent Flows with Weakly Enforced Boundary Conditions on Unstretched Meshes," Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 13-16, pp. 780-790, 2010.
[35]A. N. Brooks and T. J. R. Hughes, "Streamline Upwind Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations," Computer Methods in Applied Mechanics and Engineering, vol. 32, no. 1-3, pp. 199-259, 1982.
[36]T. J. R. Hughes and M. Mallet, "A New Finite-Element Formulation for Computational Fluid-Dynamics: III. The Generalized Streamline Operator for Multidimensional Advective-Diffusive Systems," Computer Methods in Applied Mechanics and Engineering, vol. 58, no. 3, pp. 305-328, 1986.
[37]F. Shakib, T. J. R. Hughes, and Z. Johan, "A New Finite-Element Formulation for Computational Fluid-Dynamics: X. The Compressible Euler and Navier-Stokes Equations," Computer Methods in Applied Mechanics and Engineering, vol. 89, no. 1-3, pp. 141-219, 1991.
[38]T. E. Tezduyar, "Computation of Moving Boundaries and Interfaces and Stabilization Parameters," International Journal for Numerical Methods in Fluids, vol. 43, no. 5, pp. 555-575, 2003.
[39]M. S. Alnæs, "UFL: a finite element form language," in Automated Solution of Differential Equations by the Finite Element Method: Springer, pp. 303-338, 2012.
[40]C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, "Energy-Efficient CNN Implementation On a Deeply Pipelined FPGA Cluster," in Proceedings of the 2016 International Symposium on Low Power Electronics and Design, pp. 326-331, 2016.
[41]J. Almedeij, "Drag Coefficient of Flow Around a Sphere: Matching Asymptotically the Wide Trend," Powder Technology, vol. 186, no. 3, pp. 218-223, 2008.
[42]W. L. Amy, "The Speedy Secret of Shark Skin," Physics Today, vol. 73, no. 4, pp. 58-59, 2020.
[43]K. Y. Billah and R. H. Scanlan, "Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks," American Journal of Physics, vol. 59, no. 2, pp. 118-124, 1991.
[44]D. W. Olson, S. F. Wolf, and J. M. Hook, "The Tacoma Narrows Bridge Collapse," Physics Today, vol. 68, no. 11, pp. 64-65, 2015.
[45]L. P. Dasi, H. A. Simon, P. Sucosky, and A. P. Yoganathan, "Fluid Mechanics of Artificial Heart Valves," Clinical and experimental pharmacology and physiology, vol. 36, no. 2, pp. 225-237, 2009.
[46]O. Smadi, I. Hassan, P. Pibarot, and L. Kadem, "Numerical and Experimental Investigations of Pulsatile Blood Flow Pattern Through a Dysfunctional Mechanical Heart Valve," Journal of Biomechanics, vol. 43, no. 8, pp. 1565-1572, 2010.
[47]M. Nobili, U. Morbiducci, R. Ponzini, C. Del Gaudio, A. Balducci, M. Grigioni, F. M. Montevecchi, and A. Redaelli, "Numerical Simulation of The Dynamics of a Bileaflet Prosthetic Heart Valve Using a Fluid–Structure Interaction Approach," Journal of Biomechanics, vol. 41, no. 11, pp. 2539-2550, 2008.
[48]J. Donea, A. Huerta, J. P. Ponthot, and A. Rodríguez‐Ferran, "Arbitrary Lagrangian–Eulerian Methods," Encyclopedia of computational mechanics, 2004.
[49]X. Liu, N. Gui, H. Wu, X. Yang, J. Tu, and S. Jiang, "Numerical Simulation of Flow Past a Triangular Prism with Fluid–Structure Interaction," Engineering Applications of Computational Fluid Mechanics, vol. 14, no. 1, pp. 462-476, 2020.
[50]T. Wick, "Fluid-Structure Interactions Using Different Mesh Motion Techniques," Computers & Structures, vol. 89, no. 13-14, pp. 1456-1467, 2011.
[51]L. Failer and T. Wick, "Adaptive Time-Step Control for Nonlinear Fluid–Structure Interaction," Journal of Computational Physics, vol. 366, pp. 448-477, 2018.
[52]T. Richter and T. Wick, "Finite Elements for Fluid–Structure Interaction in ALE and Fully Eulerian Coordinates," Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 41-44, pp. 2633-2642, 2010.
[53]T. Wick, "Adaptive Finite Element Simulation of Fluid-Structure Interaction with Application to Heart-Valve Dynamics," 2011.
[54]M. Schmich and B. Vexler, "Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations," SIAM Journal on Scientific Computing, vol. 30, no. 1, pp. 369-393, 2008.
[55]S. Turek and J. Hron, "Proposal for Numerical Benchmarking of Fluid-Structure Interaction Between An Elastic Object and Laminar Incompressible Flow," in Fluid-Structure Interaction: Springer, pp. 371-385, 2006.
[56]C. Geuzaine and J. F. Remacle, "Gmsh: A 3‐D Finite Element Mesh Generator with Built‐in Pre‐and Post‐Processing Facilities," International journal for numerical methods in engineering, vol. 79, no. 11, pp. 1309-1331, 2009.
(此全文20270717後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *