帳號:guest(3.15.192.196)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林庭右
作者(外文):Lin, Ting-Yu
論文名稱(中文):新型超薄均溫板熱性能之簡化數值模型
論文名稱(外文):A Simplified Numerical Model for Thermal Performance of Novel Ultra-Thin Vapor Chambers
指導教授(中文):王訓忠
指導教授(外文):Wong, Shwin-Chung
口試委員(中文):許文震
吳世國
口試委員(外文):Sheu, Wen-Jenn
Wu, Shih-kuo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033521
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:72
中文關鍵詞:超薄均溫板最大熱傳量熱阻方位角蒸汽通道厚度
外文關鍵詞:Ultra-thin vapor chambermaximum heat transfer ratethermal resistanceinclination anglevapor duct thickness
相關次數:
  • 推薦推薦:0
  • 點閱點閱:389
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗室先前提出的新型超薄均溫板(UTVC)具有簡易且卓越的支撐柱設計,兼具回水與蒸汽通道功能,得以設計出厚度僅0.2–0.4 mm的UTVC,近年已被廣泛應用在5G與電競手機上。此卓越設計更可擴展至最大熱傳量(Qmax)高達250–1000 W且低熱阻(Rvc)的產品。由於涵蓋液汽相變化的數值分析極為困難且尚不成熟,本研究乃建立一無需相變化計算的簡化理論模型,以預測新型UTVC的穩態熱傳極限性能Qmax及Rvc,可作為新型UTVC之有效設計工具。本模型將UTVC熱傳途徑分為潛熱及顯熱途徑。潛熱部分的數值模擬使用ANSYS Fluent,對蒸汽區域與毛細區域作計算,二相冷凝質傳近似為單相流體經壁面流出,其冷凝量分布利用牛頓冷卻定律獲得並透過監測入出口流量差進行迭代,使用UDF(user-defined function)輸入邊界條件進行計算。顯熱部分待潛熱數值計算結束後對通過蒸發區支撐柱之熱傳導與蒸發顯熱作並聯熱阻分析。本研究針對本實驗室140 × 80 × 0.4/0.5/0.6/0.7 mm3 (高功率)及60 × 60 × 0.2/0.25/0.3 mm3 (適用於5G手機)之UTVC性能進行分析比較,計算結果顯示預測的Qmax及Rvc均與水平與垂直方位測試的實驗結果相當一致。隨後針對蒸汽通道厚度、工作溫度、及冷凝面對流強度對UTVC熱傳極限性能探討,結果顯示對於蒸汽通道厚度0.15 mm以下之UTVC,熱傳極限性能主要受蒸汽通道厚度影響。此外,在較高的工作溫度下,UTVC有著更好的熱傳極限性能。
The novel ultra-thin vapor chamber (UTVC) proposed by our lab, having a simple but superior design for coexisting support posts, water return routes, and vapor ducts, attained 0.2–0.4 mm-thick UTVCs widely applied in 5G and gaming smartphones in recent years. This superior design is also suitable for high-power products with a maximum heat transfer rate (Qmax) higher than 250–1000 W and a low vapor chamber thermal resistance (Rvc). To avoid the extremely difficult and immature numerical analysis associated with the liquid-vapor phase-change process, a simplified theoretical model without phase-change analysis was established in this study to serve as a useful design tool to predict the steady-state thermal performance Qmax and Rvc of novel UTVCs. The model divides the heat transfer routes in the UTVC into the latent heat route and the sensible heat route. Numerical simulation of the latent heat section applies the ANSYS Fluent over the vapor region and the capillary region separately. The two-phase condensation mass transfer is approximately replaced by a single-phase wall suction flow whose suction velocity distribution is obtained by Newton’s law of cooling. The UDF (user-defined function) was employed to calculate the above boundary conditions. After the latent-heat numerical simulation, the sensible heat analysis is conducted across the supporting posts over the heated evaporation region in parallel with the evaporative latent heat. The present study analyzes and compares the performance of UTVCs made in our laboratory under horizontal and vertical orientations with 140 × 80 × 0.4/0.5/0.6/0.7 mm3 (high-power designs) and 60 × 60 × 0.2/0.25/0.3 mm3 (for 5G smartphones). The calculation results show that the predicted Qmax and Rvc agree well with the experimental results. Then, heat transfer limit performance is discussed based on the vapor duct thickness, the working temperature, and the strength of the forced convection on the top plate. The results show that the heat transfer limit of a UTVC is dominantly affected by the vapor duct thickness as it is thinner than 0.15 mm. In addition, the UTVC yields higher heat transfer limit at higher operating temperatures.
摘要 i
Abstract ii
誌謝 iv
目錄 vi
表目錄 viii
圖目錄 ix
符號表 xii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 1
1.2.1 熱管與超薄熱管 1
1.2.2 超薄均溫板 5
1.2.3 超薄均溫板熱阻 11
1.2.4 毛細滲透性與等效半徑 13
1.2.5 強制對流冷凝對ΔPv影響 16
1.2.6 冷凝液膜厚度 18
1.3 研究動機與目的 20
第二章 理論模型與方法 22
2.1 理論模型與假設 22
2.1.1 UTVC幾何模型 23
2.1.2 統御方程式 25
2.1.3 邊界條件 26
2.1.4 三維數值模型 28
2.2 數值計算方法 31
2.2.1 工作流體密度 31
2.2.2 UTVC中心壓力 31
2.2.3 毛細滲透性與等效半徑 32
2.2.4 冷凝面平均溫度Tc,avg 32
2.2.5 數值計算流程 33
2.2.6 壓力-速度耦合方程式 34
2.2.7 離散化方程式 35
2.2.8 相關參數與收斂判定 35
2.2.9 網格條件 36
2.3 UTVC熱阻與顯熱計算 37
第三章 結果與討論 40
3.1 水平方位的140 mm×80 mm UTVC的極限性能 40
3.1.1 壓力場及速度場與蒸汽密度之關係 40
3.1.2 與實驗結果比較 42
3.1.3 不同蒸汽通道厚度之單層200目銅網毛細性能比較 45
3.1.4 單層/雙層輕壓200目銅網毛細性能比較 48
3.1.5 蒸汽溫度對性能影響 49
3.1.6 h對性能影響 51
3.2 垂直方位的140 mm×80 mm UTVC的極限性能 53
3.2.1 與實驗結果比較 54
3.2.2 不同操作方位下性能比較 55
3.3 水平與垂直方位60 mm×60 mm UTVC的極限性能 57
3.3.1 與水平方位實驗結果比較 57
3.3.2 熱傳量與壓降 58
3.3.3 與垂直方位實驗結果比較 60
第四章 結論 62
參考文獻 64
附錄A 金屬網毛細熱傳導係數 68
附錄B 導熱膏熱阻量測 72

[1] G.P. Peterson, An Introduction to Heat Pipes, Wiley, 1994.
[2] H. Aoki, M. Ikeda, Y. Kimura, Ultra thin heat pipe and its application, Frontiers in Heat Pipes, 2(4) (2012) 043003.
[3] M. Mochizuki, T. Nguyen, Review of various thin heat spreader vapor chamber designs, performance, lifetime reliability and application, Frontiers in Heat and Mass Transfer, 13-12 (2019).
[4] K.-C. Hsieh, S.-C. Wong, Performance tests on 0.4mm-thick novel ultra-thin vapor chambers, in: Joint 19th International Heat Pipe Conference & 13th International Heat Pipe Symposium, Pisa, Italy, 2018.
[5] S.-C. Wong, K.-C. Hsieh, J.-D. Wu, W.-L. Han, A novel vapor chamber and its performance, International Journal of Heat and Mass Transfer, 53(11) (2010) 2377-2384.
[6] Y.-C. Li, S.-C. Wong, Effects of vapor duct thickness on the capillary blocking and thermal performance of ultra-thin vapor chambers under natural convection cooling, Applied Thermal Engineering, 195 (2021) 117148.
[7] 李元鈞, 超薄均溫板蒸汽流道深度研究與性能測試, 國立清華大學碩士論文, 2020.
[8] 曾冠惟, 採用二重銅網/溝槽或三重銅網/溝槽/銅粉複合式毛細之超薄均溫板性能測試, 國立清華大學碩士論文, 2021.
[9] R. Ranjan, J. Murthy, S. Garimella, D. Altman, M. North, Modeling and Design Optimization of Ultrathin Vapor Chambers for High Heat Flux Applications, IEEE Transactions on Components, Packaging and Manufacturing Technology, 2 (2012) 1465-1479.
[10] G. Patankar, J.A. Weibel, S.V. Garimella, Patterning the condenser-side wick in ultra-thin vapor chamber heat spreaders to improve skin temperature uniformity of mobile devices, International Journal of Heat and Mass Transfer, 101 (2016) 927-936.
[11] G. Patankar, J. Weibel, S. Garimella, Working-fluid selection for minimized thermal resistance in ultra-thin vapor chambers, International Journal of Heat and Mass Transfer, 106 (2016) 648-654.
[12] G. Huang, W. Liu, Y. Luo, T. Deng, Y. Li, H. Chen, Research and optimization design of limited internal cavity of ultra-thin vapor chamber, International Journal of Heat and Mass Transfer, 148 (2020) 119101.
[13] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, International Journal of Heat and Mass Transfer, 53(7) (2010) 1498-1506.
[14] S.-C. Wong, C.-W. Chen, Visualization experiments for groove-wicked flat-plate heat pipes with various working fluids and powder-groove evaporator, International Journal of Heat and Mass Transfer, 66 (2013) 396-403.
[15] S.-C. Wong, W.-S. Liao, Visualization experiments on flat-plate heat pipes with composite mesh-groove wick at different tilt angles, International Journal of Heat and Mass Transfer, 123 (2018) 839-847.
[16] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, International Journal of Heat and Mass Transfer, 53(19) (2010) 3792-3798.
[17] S.-C. Wong, Y.-C. Lin, J.-H. Liou, Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone, International Journal of Thermal Sciences, 52 (2012) 154-160.
[18] A. Faghri, Heat Pipe Science And Technology, Taylor & Francis, 1995.
[19] S.-C. Wong, M.-S. Deng, M.-C. Liu, Characterization of composite mesh-groove wick and its performance in a visualizable flat-plate heat pipe, International Journal of Heat and Mass Transfer, 184 (2021) 12259.
[20] B. Holley, A. Faghri, Permeability and effective pore radius measurements for heat pipe and fuel cell applications, Applied Thermal Engineering, 26 (2006) 448-462.
[21] W. Nusselt, Die Oberflächenkondensation des Wasserdampfes, VDI, 1916.
[22] E.M. Sparrow, J.L. Gregg, A boundary-layer treatment of laminar-film condensation, ASME Journal of Heat Transfer, 81 (1959) 13-18.
[23] R.D. Cess, Laminar-film condensation on a flat plate in the absence of a body force, Zeitschrift für angewandte Mathematik und Physik ZAMP, 11(5) (1960) 426-433.
[24] J.C.Y. Koh, Film condensation in a forced-convection boundary-layer flow, International Journal of Heat and Mass Transfer, 5(10) (1962) 941-954.
[25] I.G. Shekriladze, V.I. Gomelauri, Theoretical study of laminar film condensation of flowing vapour, International Journal of Heat and Mass Transfer, 9(6) (1966) 581-591.
[26] W.H. Lee, A Pressure Iteration Scheme for Two-Phase Flow Modeling, Techical Report LA-UR 79-795,1979.
[27] R.W. Schrage, A Theoretical Study of Interphase Mass Transfer, Columbia University Press,1953.
[28] ANSYS Fluent Theory Guide, ANSYS, Inc., 2021.
[29] C.R. Kharangate, I. Mudawar, Review of computational studies on boiling and condensation, International Journal of Heat and Mass Transfer, 108 (2017) 1164-1196.
[30] Z. Liu, B. Sunden, J. Yuan, VOF modeling and analysis of filmwise condensation between vertical parallel plates, Heat Transfer Research, 43 (2012) 47-68.
[31] Y. Kim, J. Choi, S. Kim, Y. Zhang, Effects of mass transfer time relaxation parameters on condensation in a thermosyphon, Journal of Mechanical Science and Technology, 29 (2015) 5497-5505.
[32] G.I. Taylor, Deposition of a viscous fluid on the wall of a tube, Journal of Fluid Mechanics, 10(2) (1961) 161-165.
[33] F.P. Bretherton, The motion of long bubbles in tubes, Journal of Fluid Mechanics, 10(2) (1961) 166-188.
[34] P. Aussillous, D. Quéré, Quick deposition of a fluid on the wall of a tube, Physics of Fluids, 12 (2000) 2367-2371.
[35] C. Fang, M. David, F.-m. Wang, K.E. Goodson, Influence of film thickness and cross-sectional geometry on hydrophilic microchannel condensation, International Journal of Multiphase Flow, 36(8) (2010) 608-619.
[36] 鄧茂燊, 採用三重複合式銅網/溝槽/銅粉毛細之平板熱管在不同傾角及工作流體下之可視化實驗, 國立清華大學碩士論文, 2021.
[37] 宋俊逸, 適用於5G智慧手機的超薄均溫板開發及暫態與穩態性能測試, 國立清華大學碩士論文, 2022.
[38]https://www.matweb.com/search/DataSheet.aspx?MatGUID=0db21ddedce14e16993ee5cbdf97878d&ckck=1.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *