|
[1] G.P. Peterson, An Introduction to Heat Pipes, Wiley, 1994. [2] H. Aoki, M. Ikeda, Y. Kimura, Ultra thin heat pipe and its application, Frontiers in Heat Pipes, 2(4) (2012) 043003. [3] M. Mochizuki, T. Nguyen, Review of various thin heat spreader vapor chamber designs, performance, lifetime reliability and application, Frontiers in Heat and Mass Transfer, 13-12 (2019). [4] K.-C. Hsieh, S.-C. Wong, Performance tests on 0.4mm-thick novel ultra-thin vapor chambers, in: Joint 19th International Heat Pipe Conference & 13th International Heat Pipe Symposium, Pisa, Italy, 2018. [5] S.-C. Wong, K.-C. Hsieh, J.-D. Wu, W.-L. Han, A novel vapor chamber and its performance, International Journal of Heat and Mass Transfer, 53(11) (2010) 2377-2384. [6] Y.-C. Li, S.-C. Wong, Effects of vapor duct thickness on the capillary blocking and thermal performance of ultra-thin vapor chambers under natural convection cooling, Applied Thermal Engineering, 195 (2021) 117148. [7] 李元鈞, 超薄均溫板蒸汽流道深度研究與性能測試, 國立清華大學碩士論文, 2020. [8] 曾冠惟, 採用二重銅網/溝槽或三重銅網/溝槽/銅粉複合式毛細之超薄均溫板性能測試, 國立清華大學碩士論文, 2021. [9] R. Ranjan, J. Murthy, S. Garimella, D. Altman, M. North, Modeling and Design Optimization of Ultrathin Vapor Chambers for High Heat Flux Applications, IEEE Transactions on Components, Packaging and Manufacturing Technology, 2 (2012) 1465-1479. [10] G. Patankar, J.A. Weibel, S.V. Garimella, Patterning the condenser-side wick in ultra-thin vapor chamber heat spreaders to improve skin temperature uniformity of mobile devices, International Journal of Heat and Mass Transfer, 101 (2016) 927-936. [11] G. Patankar, J. Weibel, S. Garimella, Working-fluid selection for minimized thermal resistance in ultra-thin vapor chambers, International Journal of Heat and Mass Transfer, 106 (2016) 648-654. [12] G. Huang, W. Liu, Y. Luo, T. Deng, Y. Li, H. Chen, Research and optimization design of limited internal cavity of ultra-thin vapor chamber, International Journal of Heat and Mass Transfer, 148 (2020) 119101. [13] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, International Journal of Heat and Mass Transfer, 53(7) (2010) 1498-1506. [14] S.-C. Wong, C.-W. Chen, Visualization experiments for groove-wicked flat-plate heat pipes with various working fluids and powder-groove evaporator, International Journal of Heat and Mass Transfer, 66 (2013) 396-403. [15] S.-C. Wong, W.-S. Liao, Visualization experiments on flat-plate heat pipes with composite mesh-groove wick at different tilt angles, International Journal of Heat and Mass Transfer, 123 (2018) 839-847. [16] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, International Journal of Heat and Mass Transfer, 53(19) (2010) 3792-3798. [17] S.-C. Wong, Y.-C. Lin, J.-H. Liou, Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone, International Journal of Thermal Sciences, 52 (2012) 154-160. [18] A. Faghri, Heat Pipe Science And Technology, Taylor & Francis, 1995. [19] S.-C. Wong, M.-S. Deng, M.-C. Liu, Characterization of composite mesh-groove wick and its performance in a visualizable flat-plate heat pipe, International Journal of Heat and Mass Transfer, 184 (2021) 12259. [20] B. Holley, A. Faghri, Permeability and effective pore radius measurements for heat pipe and fuel cell applications, Applied Thermal Engineering, 26 (2006) 448-462. [21] W. Nusselt, Die Oberflächenkondensation des Wasserdampfes, VDI, 1916. [22] E.M. Sparrow, J.L. Gregg, A boundary-layer treatment of laminar-film condensation, ASME Journal of Heat Transfer, 81 (1959) 13-18. [23] R.D. Cess, Laminar-film condensation on a flat plate in the absence of a body force, Zeitschrift für angewandte Mathematik und Physik ZAMP, 11(5) (1960) 426-433. [24] J.C.Y. Koh, Film condensation in a forced-convection boundary-layer flow, International Journal of Heat and Mass Transfer, 5(10) (1962) 941-954. [25] I.G. Shekriladze, V.I. Gomelauri, Theoretical study of laminar film condensation of flowing vapour, International Journal of Heat and Mass Transfer, 9(6) (1966) 581-591. [26] W.H. Lee, A Pressure Iteration Scheme for Two-Phase Flow Modeling, Techical Report LA-UR 79-795,1979. [27] R.W. Schrage, A Theoretical Study of Interphase Mass Transfer, Columbia University Press,1953. [28] ANSYS Fluent Theory Guide, ANSYS, Inc., 2021. [29] C.R. Kharangate, I. Mudawar, Review of computational studies on boiling and condensation, International Journal of Heat and Mass Transfer, 108 (2017) 1164-1196. [30] Z. Liu, B. Sunden, J. Yuan, VOF modeling and analysis of filmwise condensation between vertical parallel plates, Heat Transfer Research, 43 (2012) 47-68. [31] Y. Kim, J. Choi, S. Kim, Y. Zhang, Effects of mass transfer time relaxation parameters on condensation in a thermosyphon, Journal of Mechanical Science and Technology, 29 (2015) 5497-5505. [32] G.I. Taylor, Deposition of a viscous fluid on the wall of a tube, Journal of Fluid Mechanics, 10(2) (1961) 161-165. [33] F.P. Bretherton, The motion of long bubbles in tubes, Journal of Fluid Mechanics, 10(2) (1961) 166-188. [34] P. Aussillous, D. Quéré, Quick deposition of a fluid on the wall of a tube, Physics of Fluids, 12 (2000) 2367-2371. [35] C. Fang, M. David, F.-m. Wang, K.E. Goodson, Influence of film thickness and cross-sectional geometry on hydrophilic microchannel condensation, International Journal of Multiphase Flow, 36(8) (2010) 608-619. [36] 鄧茂燊, 採用三重複合式銅網/溝槽/銅粉毛細之平板熱管在不同傾角及工作流體下之可視化實驗, 國立清華大學碩士論文, 2021. [37] 宋俊逸, 適用於5G智慧手機的超薄均溫板開發及暫態與穩態性能測試, 國立清華大學碩士論文, 2022. [38]https://www.matweb.com/search/DataSheet.aspx?MatGUID=0db21ddedce14e16993ee5cbdf97878d&ckck=1.
|