|
[1] Robert D Moser, John Kim, and Nagi N Mansour. Direct numerical simulation of turbulent channel flow up to re τ= 590. Physics of fluids, 11(4):943–945, 1999. [2] John D Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Kr¨uger, Aaron E Lefohn, and Timothy J Purcell. A survey of general-purpose computation on graphics hardware. In Computer graphics forum, volume 26, pages 80–113. Wiley Online Library, 2007. [3] Parviz Moin and John Kim. Numerical investigation of turbulent channel flow. Journal of fluid mechanics, 118:341–377, 1982. [4] AKMF Hussain and WC Reynolds. Measurements in fully developed turbulent channel flow. 1975. [5] L Prandtl. Uber die ausgebildete turbulenz. verh 2nd intl kong fur tech mech, zurich. English translation: NACA Tech. Memo, 62:435, 1926. [6] M Salinas V´azquez and Olivier M´etais. Large-eddy simulation of the turbulent flow through a heated square duct. Journal of Fluid Mechanics, 453:201–238, 2002. [7] CM Winkler, Sarma L Rani, and SP Vanka. Preferential concentration of particles in a fully developed turbulent square duct flow. International Journal of Multiphase Flow, 30(1):27–50, 2004. [8] J Nikuradse. Turbulente stromung im innern des rechteckigen offenen kanals. Forschungsarbeiten, Heft, 281:36–44, 1926. [9] BE Launder and WM Ying. Prediction of flow and heat transfer in ducts of square cross section. Proceedings of the Institution of Mechanical Engineers, 187(1):455–461, 1973. [10] Alexandre Joel Chorin. Numerical solution of the navier-stokes equations. Mathematics of computation, 22(104):745–762, 1968. [11] John Kim and Parviz Moin. Application of a fractional-step method to incompressible navier-stokes equations. Journal of computational physics, 59(2):308–323, 1985. [12] Wei Lo and Chao-An Lin. Mean and turbulence structures of couette-poiseuille flows at different mean shear rates in a square duct. Physics of Fluids, 18(6):068103, 2006. [13] F Xavier Trias, Manel Soria, CD P´erez-Segarra, and Assensi Oliva. A direct schur–fourier decomposition for the efficient solution of high-order poisson equations on loosely coupled parallel computers. Numerical Linear Algebra with Applications, 13(4):303–326, 2006. [14] MPI Al DJ. A message-passing interface standard. Int’l Journal of Supercomputer Applications, 20(2):179, 2009. [15] Myoungkyu Lee and Robert D Moser. Direct numerical simulation of turbulent channel flow up to. Journal of fluid mechanics, 774:395–415, 2015. [16] Zhihui Zhang, Qinghai Miao, and Ying Wang. Cuda-based jacobi’s iterative method. In 2009 International Forum on Computer Science-Technology and Applications, volume 1, pages 259–262. IEEE, 2009. [17] Tao Wang, Yuan Yao, Lin Han, Dan Zhang, and Yuanyuan Zhang. Implementation of jacobi iterative method on graphics processor unit. In 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, volume 3, pages 324–327. IEEE, 2009. [18] Fang-An Kuo, Matthew R Smith, Chih-Wei Hsieh, Chau-Yi Chou, and Jong-Shinn Wu. Gpu acceleration for general conservation equations and its application to several engineering problems. Computers & Fluids, 45(1):147–154, 2011. [19] W Hwu Wen-Mei and David Kirk. Programming massively parallel processors. Elsevier, 2010. [20] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schr¨oder. Sparse matrix solvers on the gpu: conjugate gradients and multigrid. ACM transactions on graphics (TOG), 22(3):917– 924, 2003. [21] Xiaojue Zhu, Everett Phillips, Vamsi Spandan, John Donners, Gregory Ruetsch, Joshua Romero, Rodolfo Ostilla-M´onico, Yantao Yang, Detlef Lohse, Roberto Verzicco, et al. Afid-gpu: a versatile navier–stokes solver for wall-bounded turbulent flows on gpu clusters. Computer physics communications, 229:199–210, 2018. [22] Iulian Stroia, Lucian Itu, Cosmin Nit¸˘a, Laszlo Laz˘ar, and Constantin Suciu. Gpu accelerated geometric multigrid method: Comparison with preconditioned conjugate gradient. In 2015 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6. IEEE, 2015. [23] Mohammad Shafaet Islam and Qiqi Wang. Hierarchical jacobi iteration for structured matrices on gpus using shared memory. arXiv e-prints, pages arXiv–2006, 2020. [24] Xueqin Zhang, Kai Shen, Chengguang Xu, and Kaifang Wang. Design and implementation of parallel fft on cuda. In 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing, pages 583–589. IEEE, 2013. [25] Hao Zhang, F Xavier Trias, Andrey Gorobets, Yuanqiang Tan, and Assensi Oliva. Direct numerical simulation of a fully developed turbulent square duct flow up to reτ= 1200. International Journal of Heat and Fluid Flow, 54:258–267, 2015. [26] Hsin-Wei Hsu, Feng-Nan Hwang, Zih-Hao Wei, Sheng-Hong Lai, and Chao-An Lin. A parallel multilevel preconditioned iterative pressure poisson solver for the large-eddy simulation of turbulent flow inside a duct. Computers & Fluids, 45(1):138–146, 2011. [27] Hiroyuki Abe, Hiroshi Kawamura, and Yuichi Matsuo. Direct numerical simulation of a fully developed turbulent channel flow with respect to the reynolds number dependence. Journal of Fluids Engineering, 123(2):382–393, 2001. [28] Haecheon Choi and Parviz Moin. Effects of the computational time step on numerical solutions of turbulent flow. Journal of Computational Physics, 113(1):1–4, 1994. [29] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of computational physics, 77(2):439–471, 1988. [30] Ismail Tosun, Deniz Uner, and Canan Ozgen. Critical reynolds number for newtonian flow in rectangular ducts. Industrial & engineering chemistry research, 27(10):1955–1957, 1988. [31] Frank M White and Joseph Majdalani. Viscous fluid flow, volume 3. McGraw-Hill New York, 2006. [32] S Gavrilakis. Numerical simulation of low-reynolds-number turbulent flow through a straight square duct. Journal of Fluid Mechanics, 244:101–129, 1992.
|