帳號:guest(3.12.36.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李偉豪
作者(外文):Li, Wei-Hao
論文名稱(中文):應用圖形處理器叢集模擬壓力驅動方管紊流
論文名稱(外文):Numerical simulation of Poiseuille duct flow on multi-GPU cluster
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):吳毓庭
廖川傑
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033514
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:43
中文關鍵詞:圖形顯示卡紊流直接數值模擬平行運算
外文關鍵詞:GPUTurbulenceDNSParallel computing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:141
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在使用叢集圖形顯示卡(GPU)計算壓力驅動方管流。 GPU的設計理念與中央處理器(CPU)不同。 而且在編程的概念上也需要做很多的改變。由於圖形顯示卡的普及,近年來對 GPU 中並行計算的研究也越來越多。 然而,在數值模擬中,以往的研究大多是直接解矩陣進行的,不適合GPU執行。 因此,我們在數值模擬中求解矩陣時使用了Fraction step和搭配顯式迭代求解柏松方程式。 在矩陣求解器中,我們在 GPU 中應用低延遲共享記憶體並進行子迭代以提高收斂速度。 我們發現子迭代的收斂效率可以增加五倍。 且湍流統計結果與 Benchmark 相比也有很好的一致性,雖然流場中央有些許誤差。最後本文也進行的平行測試得到約90%的平行效率。
This study aimed to simulate Poiseuille duct flow by using multiple graphics processing units (GPUs). The design concept of the GPU is different from that of the central processing unit. Owing to the popularity of GPUs, research on GPU-based parallel computing has been increasing in recent years. In particular, in fluid dynamics, most of the previous studies is conducted direct solver, which is unsuitable for GPU programming. In this study, we used a fractional step and Jacobi iteration for solving matrices in the numerical simulation. In the matrix solver, we used low-latency shared memory in the GPU and subiteration to increase the convergence rate. We found that the subiteration can increase five times. While the turbulent statistic result showed good agreement with that of Moser et al[1], there was a small error at the center of the flow field. A strong scaling test showed the parallel performance to be 90%.
1 Introduction 1
1.1 Introduction 1
1.2 Literature survey 2
1.2.1 Turbulent Poiseuille duct flow 2
1.2.2 Fractional step method 3
1.2.3 Parallel computing 3
1.2.4 Jacobi iteration 4
1.2.5 GPU implementation 5
1.3 GPU structure 5
1.4 Objective and motivation 7
2 Numerical method 8
2.1 Governing equation 9
2.2 Grid Generation 9
2.3 Fractional step method 11
2.4 Discretization of the Momentum Equation 12
2.4.1 Spatial discretization 13
2.4.2 Temporal discretization 14
2.5 Pressure Poisson equation 14
2.6 Parallelization 16
2.7 GPU implementation 16
2.8 Jacobi iteration 17
3 Result 23
3.1 GPU implementation on Poisson solver 23
3.1.1 Effect of subiteration 24
3.1.2 Effect of block size 24
3.2 Laminar Poiseuille duct flow 26
3.3 Turbulent Poiseuille duct flow 29
3.3.1 Convergence test in turbulent flow 29
3.3.2 Turbulent flow field 29
3.3.3 Turbulent statistic 31
3.4 Performance of program 37
4 Conclusion and Future work 38
4.1 Conclusion 38
4.2 Future work 39
[1] Robert D Moser, John Kim, and Nagi N Mansour. Direct numerical simulation of turbulent channel flow up to re τ= 590. Physics of fluids, 11(4):943–945, 1999.
[2] John D Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Kr¨uger, Aaron E Lefohn, and Timothy J Purcell. A survey of general-purpose computation on graphics hardware. In Computer graphics forum, volume 26, pages 80–113. Wiley Online Library, 2007.
[3] Parviz Moin and John Kim. Numerical investigation of turbulent channel flow. Journal of fluid mechanics, 118:341–377, 1982.
[4] AKMF Hussain and WC Reynolds. Measurements in fully developed turbulent channel flow. 1975.
[5] L Prandtl. Uber die ausgebildete turbulenz. verh 2nd intl kong fur tech mech, zurich. English translation: NACA Tech. Memo, 62:435, 1926.
[6] M Salinas V´azquez and Olivier M´etais. Large-eddy simulation of the turbulent flow through a heated square duct. Journal of Fluid Mechanics, 453:201–238, 2002.
[7] CM Winkler, Sarma L Rani, and SP Vanka. Preferential concentration of particles in a fully developed turbulent square duct flow. International Journal of Multiphase Flow, 30(1):27–50, 2004.
[8] J Nikuradse. Turbulente stromung im innern des rechteckigen offenen kanals. Forschungsarbeiten, Heft, 281:36–44, 1926.
[9] BE Launder and WM Ying. Prediction of flow and heat transfer in ducts of square cross section. Proceedings of the Institution of Mechanical Engineers, 187(1):455–461, 1973.
[10] Alexandre Joel Chorin. Numerical solution of the navier-stokes equations. Mathematics of computation, 22(104):745–762, 1968.
[11] John Kim and Parviz Moin. Application of a fractional-step method to incompressible navier-stokes equations. Journal of computational physics, 59(2):308–323, 1985.
[12] Wei Lo and Chao-An Lin. Mean and turbulence structures of couette-poiseuille flows at different mean shear rates in a square duct. Physics of Fluids, 18(6):068103, 2006.
[13] F Xavier Trias, Manel Soria, CD P´erez-Segarra, and Assensi Oliva. A direct schur–fourier decomposition for the efficient solution of high-order poisson equations on loosely coupled parallel computers. Numerical Linear Algebra with Applications, 13(4):303–326, 2006.
[14] MPI Al DJ. A message-passing interface standard. Int’l Journal of Supercomputer Applications, 20(2):179, 2009.
[15] Myoungkyu Lee and Robert D Moser. Direct numerical simulation of turbulent channel flow up to. Journal of fluid mechanics, 774:395–415, 2015.
[16] Zhihui Zhang, Qinghai Miao, and Ying Wang. Cuda-based jacobi’s iterative method. In 2009 International Forum on Computer Science-Technology and Applications, volume 1, pages 259–262. IEEE, 2009.
[17] Tao Wang, Yuan Yao, Lin Han, Dan Zhang, and Yuanyuan Zhang. Implementation of jacobi iterative method on graphics processor unit. In 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, volume 3, pages 324–327. IEEE, 2009.
[18] Fang-An Kuo, Matthew R Smith, Chih-Wei Hsieh, Chau-Yi Chou, and Jong-Shinn Wu. Gpu acceleration for general conservation equations and its application to several engineering problems. Computers & Fluids, 45(1):147–154, 2011.
[19] W Hwu Wen-Mei and David Kirk. Programming massively parallel processors. Elsevier, 2010.
[20] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schr¨oder. Sparse matrix solvers on the gpu: conjugate gradients and multigrid. ACM transactions on graphics (TOG), 22(3):917– 924, 2003.
[21] Xiaojue Zhu, Everett Phillips, Vamsi Spandan, John Donners, Gregory Ruetsch, Joshua Romero, Rodolfo Ostilla-M´onico, Yantao Yang, Detlef Lohse, Roberto Verzicco, et al. Afid-gpu: a versatile navier–stokes solver for wall-bounded turbulent flows on gpu clusters. Computer physics communications, 229:199–210, 2018.
[22] Iulian Stroia, Lucian Itu, Cosmin Nit¸˘a, Laszlo Laz˘ar, and Constantin Suciu. Gpu accelerated geometric multigrid method: Comparison with preconditioned conjugate gradient. In 2015 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–6. IEEE, 2015.
[23] Mohammad Shafaet Islam and Qiqi Wang. Hierarchical jacobi iteration for structured matrices on gpus using shared memory. arXiv e-prints, pages arXiv–2006, 2020.
[24] Xueqin Zhang, Kai Shen, Chengguang Xu, and Kaifang Wang. Design and implementation of parallel fft on cuda. In 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing, pages 583–589. IEEE, 2013.
[25] Hao Zhang, F Xavier Trias, Andrey Gorobets, Yuanqiang Tan, and Assensi Oliva. Direct numerical simulation of a fully developed turbulent square duct flow up to reτ= 1200. International Journal of Heat and Fluid Flow, 54:258–267, 2015.
[26] Hsin-Wei Hsu, Feng-Nan Hwang, Zih-Hao Wei, Sheng-Hong Lai, and Chao-An Lin. A parallel multilevel preconditioned iterative pressure poisson solver for the large-eddy simulation of turbulent flow inside a duct. Computers & Fluids, 45(1):138–146, 2011.
[27] Hiroyuki Abe, Hiroshi Kawamura, and Yuichi Matsuo. Direct numerical simulation of a fully developed turbulent channel flow with respect to the reynolds number dependence. Journal of Fluids Engineering, 123(2):382–393, 2001.
[28] Haecheon Choi and Parviz Moin. Effects of the computational time step on numerical solutions of turbulent flow. Journal of Computational Physics, 113(1):1–4, 1994.
[29] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of computational physics, 77(2):439–471, 1988.
[30] Ismail Tosun, Deniz Uner, and Canan Ozgen. Critical reynolds number for newtonian flow in rectangular ducts. Industrial & engineering chemistry research, 27(10):1955–1957, 1988.
[31] Frank M White and Joseph Majdalani. Viscous fluid flow, volume 3. McGraw-Hill New York, 2006.
[32] S Gavrilakis. Numerical simulation of low-reynolds-number turbulent flow through a straight square duct. Journal of Fluid Mechanics, 244:101–129, 1992.
(此全文20270810後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *