|
[1] I. Staffell, D. Scamman, A. Abad, P. Balcombe, P. Dodds, P. Ekins, N. Shah, K. Ward, The role of hydrogen and fuel cells in the global energy system, Energy & Environmental Science, 12 (2018) . [2] M. Al-Zaidi, R. Al-Khafaji, D. Al-Zubaidy, M. Mahmood, A review: Fuel cells types and their applications, International Journal of Scientific Engineering and Applied Science, 7 (2021) 375-390. [3] O.Z. Sharaf, M.F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renewable and Sustainable Energy Reviews, 32 (2014) 810-853. [4] K. Mazloomi, C. Gomes, Hydrogen as an energy carrier: Prospects and challenges, Renewable and Sustainable Energy Reviews, 16(5) (2012) 3024-3033. [5] M. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems, International Journal of Hydrogen Energy, 33(15) (2008) 4013-4029. [6] L. F. Brown, A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles, International Journal of Hydrogen Energy, 26(4) (2001) 381-397. [7] H. Li, C. Ma, X. Zou, A. Li, Z. Huang, L. Zhu, On-board methanol catalytic reforming for hydrogen production-A review, International Journal of Hydrogen Energy, 46(43) (2021) 22303-22327. [8] G. Garcia, E. Arriola, W.-H. Chen, M.D. De Luna, A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability, Energy, 217 (2021) 119384. [9] G.G. Park, S.D. Yim, Y.G. Yoon, C.S. Kirn, D.J. Seo, K. Eguchi, Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems, Catalysis Today, 110(1-2) (2005) 108-113. [10] J. Agrell, H. Birgersson, M. Boutonnet, Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation, Journal of Power Sources, 106(1) (2002) 249-257. [11] R.-Y. Chein, Y.-C. Chen, C.-M. Chang, J.N. Chung, Experimental study on the performance of hydrogen production from miniature methanol–steam reformer integrated with Swiss-roll type combustor for PEMFC, Applied Energy, 105 (2013) 86-98. [12] C.J. Jiang, D.L. Trimm, M.S. Wainwright, N.W. Cant, Kinetic study of steam reforming of methanol over copper-based catalysts, Applied Catalysis A: General, 93(2) (1993) 245-255. [13] L. Zhang, L.-W. Pan, C.-J. Ni, T.-J. Sun, S.-D. Wang, Y.-K. Hu, A.-J. Wang, S.-S. Zhao, Effects of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming, Journal of Fuel Chemistry and Technology, 41(7) (2013) 883-888. [14] A. Karim, J. Bravo, D. Gorm, T. Conant, A. Datye, Comparison of wall-coated and packed-bed reactors for steam reforming of methanol, Catalysis Today, 110(1) (2005) 86-91. [15] S. Nagano, H. Miyagawa, O. Azegami, K. Ohsawa, Heat transfer enhancement in methanol steam reforming for a fuel cell, Energy Conversion and Management, 42 (2001) 1817-1829. [16] D.D. Davieau, P.A. Erickson, The effect of geometry on reactor performance in the steam-reformation process, International Journal of Hydrogen Energy, 32(9) (2007) 1192-1200. [17] H.C. Yoon, J. Otero, P.A. Erickson, Reactor design limitations for the steam reforming of methanol, Applied Catalysis B: Environmental, 75(3) (2007) 264-271. [18] H. Ji, J. Lee, E. Choi, I. Seo, Hydrogen production from steam reforming using an indirect heating method, International Journal of Hydrogen Energy, 43(7) (2018) 3655-3663. [19] R. Chein, Y.-C. Chen, J.N. Chung, Axial heat conduction and heat supply effects on methanol-steam reforming performance in micro-scale reformers, International Journal of Heat and Mass Transfer, 55(11) (2012) 3029-3042. [20] P. Nehe, V.M. Reddy, S. Kumar, Investigations on a new internally-heated tubular packed-bed methanol–steam reformer, International Journal of Hydrogen Energy, 40(16) (2015) 5715-5725. [21] P. Erickson, C.-H. Liao, Heat transfer enhancement of steam reformation by passive flow disturbance inside the catalyst bed, ASME Journal of Heat Transfer, 129 (2007) 995-1003. [22] G. Arzamendi, P.M. Diéguez, M. Montes, M.A. Centeno, J.A. Odriozola, L.M. Gandía, Integration of methanol steam reforming and combustion in a microchannel reactor for H2 production: A CFD simulation study, Catalysis Today, 143(1) (2009) 25-31. [23] J.M. Leimert, P. Treiber, J. Karl, The heatpipe reformer with optimized combustor design for enhanced cold gas efficiency, Fuel Processing Technology, 141 (2016) 68-73. [24] J.R. McDonough, A.N. Phan, D.A. Reay, A.P. Harvey, Passive isothermalisation of an exothermic reaction in flow using a novel “Heat Pipe Oscillatory Baffled Reactor (HPOBR)”, Chemical Engineering and Processing: Process Intensification, 110 (2016) 201-213. [25] S.-C. Wong, H.-C. Hsiao, K.-F. Lo, Improving temperature uniformity and performance of CO preferential oxidation for hydrogen-rich reformate with a heat pipe, International Journal of Hydrogen Energy, 39(12) (2014) 6492-6496. [26] 林育愷,以熱管進行熱管理之填充床式甲醇蒸汽重組產氫整合系統,國立清華大學碩士論文, 2020.
|