帳號:guest(18.225.156.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林渙程
作者(外文):Lin, Huan-Cheng
論文名稱(中文):微藻結合磁性奈米粒子吸附劑之製備與其應用於去除水中重金屬離子之研究
論文名稱(外文):Removal of Heavy metal ions from Water by Microalgae with Magnetic nanoparticle
指導教授(中文):饒達仁
指導教授(外文):Yao, Da-Jeng
口試委員(中文):陳之碩
劉意如
口試委員(外文):Chen, Chi-Shuo
Liu, Yi-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033510
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:71
中文關鍵詞:微藻吸附磁性奈米粒子重金屬離子
外文關鍵詞:MicroalgaeAdsorptionMagnetic particleHeavy metal ions
相關次數:
  • 推薦推薦:0
  • 點閱點閱:409
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究藉由微藻表面豐富的官能基以及具磁性特性的四氧化三鐵磁性奈米粒子(Fe3O4 MNPs),製備吸附劑材料,透過紫外光/可見光分光光度計對不同金屬離子所建立出檢量線,對吸附前後的重金屬溶液進行定量分析,以分別探討微藻、Fe3O4 MNPs、不同混合比例的磁性粒子@微藻對Cr(VI)及Cu(II)的吸附效能,並觀察吸附行為的差異及趨勢,以得出適合的吸附條件。
本實驗將分為四個部分:首先,我們分別以培養完成的微藻經乾燥後,研磨製備出微藻生物質;在氮氣的環境下,以化學共沉法製備無修飾之Fe3O4 MNPs;結合磁性粒子@微藻,形成表面具有大量的微藻特性官能基、具磁性的複合型材料,並以FTIR、TGA、SQUID分析證實其表面特徵、重量百分比及其超順磁性。而後,以溶液中型態為陰離子的Cr(VI)及陽離子的Cu(II)分別作探討,為了討論各個環境對吸附過程的影響,改變了初始的pH值、初始的重金屬濃度、不同的接觸時間、不同的吸附劑劑量。再來,探討同時存在Cr(VI)及Cu(II)的二元溶液是否存在競爭反應,找出對兩者皆有良好去除率的條件,於此先以微藻生物質與Fe3O4 MNPs做初步觀察,得出微藻生物質適合去除Cu(II),而Fe3O4 MNPs適合去除Cr(VI),並以不同比例的磁性粒子@微藻、初始pH值、初始Cr(VI)濃度、吸附劑劑量此四項影響因子作為自變數,透過反應曲面法(Response surface methodology, RSM)中的Box-Behnken Design(BBD)建構出對不同Cr(VI)濃度與固定Cu(II) 20 mg/L下,分別具88.84、95.6 %可預測性的二次迴歸模型。最終,以0.5M NaOH + 2.5M NaCl及0.2M HCl分別作為對Cr(VI)及Cu(II)的洗脫液,對磁性粒子@微藻進行三次的吸附-解吸附的循環實驗,證實其可重複使用性,並以常見的Langmuir及Freundlich等溫吸附模型和PFO及PSO模型進行擬合,描述吸附行為。
磁性粒子@微藻作為去除重金屬離子的材料,具備了超順磁性,可藉由永久磁鐵在幾秒鐘內實現吸附劑與溶液間的分離,且外加磁場移除後便不具有磁性,大幅度的降低了時間成本並提高其應用價值。
In this study, adsorbent materials were prepared by using abundant functional groups on the surface of microalgae and magnetic nanoparticles with magnetic properties. The calibration lines were established for different metal ions by UV/Vis spectrophotometer. The solution was quantitatively analyzed to investigate the adsorption efficiency of microalgae, Fe3O4 magnetic nanoparticles (MNPs), and magnetic particles @ microalgae with different mixing ratios on Cr(VI) and Cu(II), and to observe the difference in adsorption behavior and trend to obtain suitable adsorption conditions.
This experiment will be divided into four parts: first, we use the cultured microalgae to be dried and ground to prepare the microalgal biomass; in the nitrogen environment, the Fe3O4 MNPs are organized by the chemical co-precipitation method; combined with magnetic particles @ microalgae to form a magnetic composite material with a large number of functional groups characteristic of microalgae on the surface, and its surface characteristics, weight percentage, and superparamagnetic properties were confirmed by FTIR, TGA, and SQUID analysis. Then, the forms of Cr(VI) as anions and Cu(II) as cations in the solution were discussed respectively. To discuss the influence of each environment on the adsorption process, the initial pH value, initial heavy metal concentration, and different contact times, different adsorbent doses.
Next, to explore whether there is a competitive reaction in the binary solution with both Cr(VI) and Cu(II), and find out the conditions that have a good removal rate for both, here we first use microalgal biomass and Fe3O4 MNPs. Preliminary observation shows that microalgal biomass is suitable for removing Cu(II), while Fe3O4 MNPs are suitable for removing Cr(VI). Initial pH value, Cr(VI) concentration, and adsorbent dose, these four influencing factors are used as independent variables, through Box-Behnken Design (BBD) in Response surface methodology (RSM) to construct the different Cr(VI) concentrations. Quadratic regression models with 88.84 and 95.6 % predictability, respectively, with a fixed Cu(II) of 20 mg/L. Finally, 0.5M NaOH + 2.5M NaCl and 0.2M HCl were used as eluents for Cr(VI) and Cu(II), respectively, and the magnetic particles @ microalgae were subjected to three adsorption-desorption cycles to prove it is reusable. Fitted with the common Langmuir and Freundlich isotherm adsorption models and PFO and PSO models to describe the adsorption behavior.
Magnetic particles @ microalgae, as a material for removing heavy metal ions, have superparamagnetic properties, which can be separated from the adsorbent and the solution within a few seconds by a permanent magnet, and will not be magnetic after external magnetic field removal. It reduces the time cost and improves its application value.
摘要......i
ABSTRACT......iii
致謝......v
表目錄......ix
圖目錄......x
第一章 緒論......1
1.1 研究背景......1
1.2 研究動機......1
1.3 研究目標及內容......3
第二章 文獻回顧......5
2.1 鉻、銅的特性簡介......5
2.2吸附劑......6
2.2.1 微藻......6
2.2.2 磁性粒子......8
2.2.3 藻類複合材料......10
2.3 生物吸附機制......12
2.3.1 活藻類、死生物質的比較......13
2.4 吸附過程的影響因素......15
2.4 吸附劑的再生......17
2.5 重金屬溶液的檢測方法......18
2.5.1 ICP-MS......18
2.5.2 AAS......19
2.5.3 UV-vis......19
第三章 實驗材料及研究方法......21
3.1 實驗流程......21
3.2 實驗所需之儀器......22
3.3 吸附劑的製備......24
3.3.1 微藻生物質的培養與製備......24
3.3.2磁性粒子製備......27
3.3.3磁性粒子@微藻製備......28
3.4 實驗設計......29
3.4.1 Box-Behnken Design(BBD)......29
3.4.2 解吸附及再生研究......31
3.5 重金屬溶液配製與檢測......32
3.5.1 Cr(VI)溶液......32
3.5.2 Cu(II)溶液......34
3.6 吸附行為描述......36
3.6.1 Langmuir等溫吸附模型......36
3.6.2 Freundlich等溫吸附模型......37
3.6.3 吸附動力學......38
第四章 實驗結果與討論......40
4.1 吸附劑的表面官能基鑑定......40
4.2 吸附劑的熱重分析......41
4.3 吸附劑的磁性量測......42
4.3 Cr(VI)的吸附實驗結果......44
4.3.1 初始pH值的影響......44
4.3.2 初始重金屬濃度及接觸時間的影響......45
4.3.3 吸附劑劑量的影響......47
4.4 Cu(II)之吸附實驗結果......48
4.4.1 初始pH值的影響......48
4.4.2 初始重金屬濃度及接觸時間的影響......49
4.4.3 吸附劑劑量的影響......51
4.5 二元(Cr(VI)/Cu(II))之吸附實驗......51
4.5.1微藻生物質及磁性粒子的二元吸附......52
4.5.2磁性粒子@微藻的二元吸附......53
4.5.2.1 迴歸模型及方差分析......54
4.5.2.2 柏拉圖及三維曲面圖......57
4.5.2.3渴望函數......60
4.6 吸附-解吸附循環......61
4.7 等溫吸附模型......62
4.8 吸附動力學模型......64
第五章 結論與未來規劃......65
5.1 結論......65
5.2 未來規劃......67
參考文獻......69
[1] S.-K. Wang, A. R. Stiles, C. Guo, and C.-Z. Liu, "Harvesting microalgae by magnetic separation: A review," Algal Research, vol. 9, pp. 178-185, 2015.
[2] O. Ajouyed, C. Hurel, M. Ammari, L. B. Allal, and N. Marmier, "Sorption of Cr (VI) onto natural iron and aluminum (oxy) hydroxides: effects of pH, ionic strength and initial concentration," Journal of Hazardous Materials, vol. 174, no. 1-3, pp. 616-622, 2010.
[3] R. P. John, G. Anisha, K. M. Nampoothiri, and A. Pandey, "Micro and macroalgal biomass: a renewable source for bioethanol," Bioresource technology, vol. 102, no. 1, pp. 186-193, 2011.
[4] O. Pignolet, S. Jubeau, C. Vaca-Garcia, and P. Michaud, "Highly valuable microalgae: biochemical and topological aspects," Journal of Industrial Microbiology and Biotechnology, vol. 40, no. 8, pp. 781-796, 2013.
[5] W. J. Oswald and H. B. Gotaas, "Photosynthesis in sewage treatment," Transactions of the American Society of Civil Engineers, vol. 122, no. 1, pp. 73-97, 1957.
[6] A. Lavoie and J. De la Noüe, "Hyperconcentrated cultures of Scenedesmus obliquus: a new approach for wastewater biological tertiary treatment?," Water research, vol. 19, no. 11, pp. 1437-1442, 1985.
[7] B. Sarada, M. K. Prasad, K. K. Kumar, and C. V. R. Murthy, "Cadmium removal by macro algae Caulerpa fastigiata: Characterization, kinetic, isotherm and thermodynamic studies," Journal of Environmental Chemical Engineering, vol. 2, no. 3, pp. 1533-1542, 2014.
[8] S. Rangabhashiyam, E. Suganya, A. V. Lity, and N. Selvaraju, "Equilibrium and kinetics studies of hexavalent chromium biosorption on a novel green macroalgae Enteromorpha sp," Research on Chemical Intermediates, vol. 42, no. 2, pp. 1275-1294, 2016.
[9] N. Sooksawat, M. Meetam, M. Kruatrachue, P. Pokethitiyook, and D. Inthorn, "Equilibrium and kinetic studies on biosorption potential of charophyte biomass to remove heavy metals from synthetic metal solution and municipal wastewater," Bioremediation journal, vol. 20, no. 3, pp. 240-251, 2016.
[10] N. Mirghaffari, E. Moeini, and O. Farhadian, "Biosorption of Cd and Pb ions from aqueous solutions by biomass of the green microalga, Scenedesmus quadricauda," Journal of applied phycology, vol. 27, no. 1, pp. 311-320, 2015.
[11] W. M. Ibrahim, A. F. Hassan, and Y. A. Azab, "Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon," Egyptian journal of basic and applied sciences, vol. 3, no. 3, pp. 241-249, 2016.
[12] M. Arif, Y. Li, M. M. El-Dalatony, C. Zhang, X. Li, and E.-S. Salama, "A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal," Renewable Energy, vol. 163, pp. 1973-1982, 2021.
[13] D. K. Cheng, Field and wave electromagnetics. Pearson Education India, 1989.
[14] Y. Liu, M. Chen, and H. Yongmei, "Study on the adsorption of Cu (II) by EDTA functionalized Fe3O4 magnetic nano-particles," Chemical Engineering Journal, vol. 218, pp. 46-54, 2013.
[15] L. Xu, C. Guo, F. Wang, S. Zheng, and C.-Z. Liu, "A simple and rapid harvesting method for microalgae by in situ magnetic separation," Bioresource technology, vol. 102, no. 21, pp. 10047-10051, 2011.
[16] L. Shen et al., "A high-efficiency Fe2O3@ Microalgae composite for heavy metal removal from aqueous solution," Journal of Water Process Engineering, vol. 33, p. 101026, 2020.
[17] K. Chojnacka, "Biosorption and bioaccumulation–the prospects for practical applications," Environment international, vol. 36, no. 3, pp. 299-307, 2010.
[18] V. Javanbakht, S. A. Alavi, and H. Zilouei, "Mechanisms of heavy metal removal using microorganisms as biosorbent," Water Science and Technology, vol. 69, no. 9, pp. 1775-1787, 2014.
[19] F. Veglio and F. Beolchini, "Removal of metals by biosorption: a review," Hydrometallurgy, vol. 44, no. 3, pp. 301-316, 1997.
[20] R. Flouty and G. Estephane, "Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: a comparative study," Journal of environmental management, vol. 111, pp. 106-114, 2012.
[21] C. M. Monteiro, P. M. Castro, and F. X. Malcata, "Metal uptake by microalgae: underlying mechanisms and practical applications," Biotechnology progress, vol. 28, no. 2, pp. 299-311, 2012.
[22] S. Rangabhashiyam and P. Balasubramanian, "Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae," Bioresource technology reports, vol. 5, pp. 261-279, 2019.
[23] R. Jayakumar, M. Rajasimman, and C. Karthikeyan, "Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu (II) from an aqueous solution using marine green algae: Halimeda gracilis," Ecotoxicology and environmental safety, vol. 121, pp. 199-210, 2015.
[24] H. Javadian, M. Ahmadi, M. Ghiasvand, S. Kahrizi, and R. Katal, "Removal of Cr (VI) by modified brown algae Sargassum bevanom from aqueous solution and industrial wastewater," Journal of the Taiwan Institute of Chemical Engineers, vol. 44, no. 6, pp. 977-989, 2013.
[25] K. Z. Elwakeel, A. S. Al-Bogami, and A. M. Elgarahy, "Efficient retention of chromate from industrial wastewater onto a green magnetic polymer based on shrimp peels," Journal of Polymers and the Environment, vol. 26, no. 5, 2018.
[26] "ICP-MS." https://www.merckmillipore.com/TW/zh/water-purification/learning-centers/applications/inorganic-analysis/icp-ms/_e2b.qB.s7QAAAFAniQQWTtN,nav?ReferrerURL=https%3A%2F%2Fwww.google.com%2F (accessed.
[27] R. Mikkelsen, "Humic materials for agriculture," Better crops, vol. 89, no. 3, pp. 6-10, 2005.
[28] "UV-vis." https://www.technologynetworks.com/analysis/articles/uv-vis-spectroscopy-principle-strengths-and-limitations-and-applications-349865 (accessed.
[29] A. Sanchez-Hachair and A. Hofmann, "Hexavalent chromium quantification in solution: comparing direct UV–visible spectrometry with 1, 5-diphenylcarbazide colorimetry," Comptes Rendus Chimie, vol. 21, no. 9, pp. 890-896, 2018.
[30] M. N. Uddin, M. A. Salam, and M. A. Hossain, "Spectrophotometric measurement of Cu (DDTC) 2 for the simultaneous determination of zinc and copper," Chemosphere, vol. 90, no. 2, pp. 366-373, 2013.
[31] K. Y. Foo and B. H. Hameed, "Insights into the modeling of adsorption isotherm systems," Chemical engineering journal, vol. 156, no. 1, pp. 2-10, 2010.
[32] T. W. Weber and R. K. Chakravorti, "Pore and solid diffusion models for fixed‐bed adsorbers," AIChE Journal, vol. 20, no. 2, pp. 228-238, 1974.
[33] S. K. Lagergren, "About the theory of so-called adsorption of soluble substances," Sven. Vetenskapsakad. Handingarl, vol. 24, pp. 1-39, 1898.
[34] Y. Ho, Wase, DAJ and C. CF Forster, "Removal of lead ions from aqueous solution using sphagnum moss peat as adsorbent," Water SA, vol. 22, no. 3, pp. 219-224, 1996.
[35] J. Wang and X. Guo, "Adsorption kinetic models: Physical meanings, applications, and solving methods," Journal of Hazardous Materials, vol. 390, p. 122156, 2020.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *