|
[1] 能源統計年報 - 綜合類 - 經濟部能源局(Bureau of Energy, Ministry of Economic Affairs, R.O.C.)全球資訊網. [2] Statistics I. Key world energy statistics. Paris International Energy Agency. 2020. [3] Ferreira‐Aparicio P, Benito M, Sanz J. New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers. Catalysis Reviews. 2005;47:491-588. [4] 曲新生, 陳發林, 呂錫民(2007)。產氫與儲氫技術。台北市:五南. [5] García L. Hydrogen production by steam reforming of natural gas and other nonrenewable feedstocks. Compendium of hydrogen energy: Elsevier; 2015. p. 83-107. [6] Hidalgo‐Vivas A, Cooper B. Sulfur removal methods. Handbook of Fuel Cells. 2010. [7] Pirklbauer J, Schöny G, Zerobin F, Pröll T, Hofbauer H. Optimization of stage numbers in a multistage fluidized bed temperature swing adsorption system for CO2 capture. Energy Procedia. 2017;114:2173-81. [8] Mason JA, Sumida K, Herm ZR, Krishna R, Long JR. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy & Environmental Science. 2011;4:3030-40. [9] York AP, Xiao T, Green ML. Brief overview of the partial oxidation of methane to synthesis gas. Topics in Catalysis. 2003;22:345-58. [10] Pina J, Borio DO. Modeling an simulation of an autothermal reformer. Latin American applied research. 2006;36:289-94. [11] Zhai X, Ding S, Liu Z, Jin Y, Cheng Y. Catalytic performance of Ni catalysts for steam reforming of methane at high space velocity. Int J Hydrogen Energ. 2011;36:482-9. [12] Tonkovich ALY, Yang B, Perry ST, Fitzgerald SP, Wang Y. From seconds to milliseconds to microseconds through tailored microchannel reactor design of a steam methane reformer. Catal Today. 2007;120:21-9. [13] Karakaya M, Keskin S, Avci AK. Parametric study of methane steam reforming to syngas in a catalytic microchannel reactor. Applied Catalysis A: General. 2012;411:114-22. [14] Zhai X, Cheng Y, Zhang Z, Jin Y, Cheng Y. Steam reforming of methane over Ni catalyst in micro-channel reactor. Int J Hydrogen Energ. 2011;36:7105-13. [15] Zhai X, Ding S, Cheng Y, Jin Y, Cheng Y. CFD simulation with detailed chemistry of steam reforming of methane for hydrogen production in an integrated micro-reactor. Int J Hydrogen Energ. 2010;35:5383-92. [16] Chen K, Zhao Y, Zhang W, Feng D, Sun S. The intrinsic kinetics of methane steam reforming over a nickel-based catalyst in a micro fluidized bed reaction system. Int J Hydrogen Energ. 2020;45:1615-28. [17] Annesini M, Piemonte V, Turchetti L. Carbon formation in the steam reforming process: a thermodynamic analysis based on the elemental composition. Chemical Engineering. 2007;11. [18] Xu J, Chen L, Tan KF, Borgna A, Saeys M. Effect of boron on the stability of Ni catalysts during steam methane reforming. Journal of Catalysis. 2009;261:158-65. [19] Abbas SZ, Dupont V, Mahmud T. Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int J Hydrogen Energ. 2017;42:2889-903. [20] Khzouz M, Gkanas EI. Experimental and numerical study of low temperature methane steam reforming for hydrogen production. Catalysts. 2017;8:5. [21] Iglesias I, Forti M, Baronetti G, Mariño F. Zr-enhanced stability of ceria based supports for methane steam reforming at severe reaction conditions. Int J Hydrogen Energ. 2019;44:8121-32. [22] Grasa GS, Abanades JC. CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Industrial & Engineering Chemistry Research. 2006;45:8846-51. [23] Lysikov AI, Salanov AN, Okunev AG. Change of CO2 carrying capacity of CaO in isothermal recarbonation− decomposition cycles. Industrial & Engineering Chemistry Research. 2007;46:4633-8. [24] Dou B, Song Y, Liu Y, Feng C. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor. J Hazard Mater. 2010;183:759-65. [25] Fernandez J, Abanades J, Grasa G. Modeling of sorption enhanced steam methane reforming—Part II: Simulation within a novel Ca/Cu chemical loop process for hydrogen production. Chemical engineering science. 2012;84:12-20. [26] Abbas SZ, Dupont V, Mahmud T. Modelling of H2 production in a packed bed reactor via sorption enhanced steam methane reforming process. Int J Hydrogen Energ. 2017;42:18910-21. [27] Neni A, Benguerba Y, Balsamo M, Erto A, Ernst B, Benachour D. Numerical study of sorption-enhanced methane steam reforming over Ni/Al2O3 catalyst in a fixed-bed reactor. International Journal of Heat and Mass Transfer. 2021;165:120635. [28] Faheem HH, Tanveer HU, Abbas SZ, Maqbool F. Comparative study of conventional steam-methane-reforming (SMR) and auto-thermal-reforming (ATR) with their hybrid sorption enhanced (SE-SMR & SE-ATR) and environmentally benign process models for the hydrogen production. Fuel. 2021;297:120769. [29] Kaisare NS, Lee JH, Fedorov AG. Hydrogen generation in a reverse‐flow microreactor: 1. Model formulation and scaling. Aiche J. 2005;51:2254-64. [30] Kaisare NS, Lee JH, Fedorov AG. Hydrogen generation in a reverse‐flow microreactor: 2. Simulation and analysis. Aiche J. 2005;51:2265-72. [31] Hoang D, Chan S, Ding O. Kinetic and modelling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support. Chem Eng J. 2005;112:1-11. [32] Chen C-H, Yu C-T, Chen W-H. Improvement of steam methane reforming via in-situ CO2 sorption over a nickel-calcium composite catalyst. Int J Hydrogen Energ. 2021;46:16655-66. [33] Shu J, Grandjean BP, Kaliaguine S. Methane steam reforming in asymmetric Pd-and Pd-Ag/porous SS membrane reactors. Applied Catalysis A: General. 1994;119:305-25. [34] Phanikumar M, Mahajan R. Non-Darcy natural convection in high porosity metal foams. International journal of heat and mass transfer. 2002;45:3781-93. [35] Francesconi JA, Mussati MC, Aguirre PA. Analysis of design variables for water-gas-shift reactors by model-based optimization. J Power Sources. 2007;173:467-77. [36] Poling BE, O'Connell JP, Prausnitz JM, ProQuest. The properties of gases and liquids. 5th ed. New York: McGraw-Hill; 2001. [37] Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. 2nd edition ed. Hoboken, NJ: Wiley; 2002. [38] Xu JG, Froment GF. Methane Steam Reforming, Methanation and Water-Gas Shift .1. Intrinsic Kinetics. Aiche J. 1989;35:88-96. [39] Hou KH, Hughes R. The kinetics of methane steam reforming over a Ni/alpha-Al2O catalyst. Chem Eng J. 2001;82:311-28. [40] Rout KR, Jakobsen HA. A numerical study of pellets having both catalytic- and capture properties for SE-SMR process: Kinetic- and product layer diffusion controlled regimes. Fuel Process Technol. 2013;106:231-46. [41] Li YH, Wang YQ, Zhang XW, Mi ZT. Thermodynamic analysis of autothermal steam and CO2 reforming of methane. Int J Hydrogen Energ. 2008;33:2507-14. [42] Antzara A, Heracleous E, Bukur DB, Lemonidou AA. Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture. Int J Greenh Gas Con. 2015;32:115-28. [43] Sadooghi P, Rauch R. Pseudo heterogeneous modeling of catalytic methane steam reforming process in a fixed bed reactor. J Nat Gas Sci Eng. 2013;11:46-51. [44] Radfarnia HR, Iliuta MC. Development of Al-stabilized CaO-nickel hybrid sorbent-catalyst for sorption-enhanced steam methane reforming. Chem Eng Sci. 2014;109:212-9. [45] Aihara M, Nagai T, Matsushita J, Negishi Y, Ohya H. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction. Appl Energ. 2001;69:225-38. [46] Sircar S, Golden TC. Purification of hydrogen by pressure swing adsorption. Separ Sci Technol. 2000;35:667-87.
|