帳號:guest(3.128.94.74)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林筱媛
作者(外文):Lin, Hsiao-Yuan
論文名稱(中文):有無吸附助效甲烷蒸汽重組反應器之速度分析
論文名稱(外文):Velocity Analysis of Methane Steam Reforming Reactors with/without Sorption Enhancement
指導教授(中文):許文震
指導教授(外文):Sheu, Wen-Jenn
口試委員(中文):王訓忠
陳建宏
口試委員(外文):Wong, Shwin-Chung
Chen, Jian-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033504
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:122
中文關鍵詞:甲烷蒸汽重組吸附助效管狀反應器產氫
外文關鍵詞:methane steam reformingsorption enhancedtubular reactorhydrogen production
相關次數:
  • 推薦推薦:0
  • 點閱點閱:43
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以數值模擬形式,進行有無吸附助效甲烷蒸汽重組之速度分析,針對不同操作條件找出何種反應器之平均速度與滯留時間相對誤差較大,並且在吸附助效反應器中找出何種水碳比到達操作終止時間其氧化鈣轉化率較佳。
有無吸附助效甲烷蒸汽重組之速度分析的部份,藉由改變不同操作條件,探討何種反應器的滯留時間相對誤差較大,其中估算值為入口速度推導之滯留時間,而實際值為氣體於觸媒床之真實滯留時間。數值模擬結果顯示當水碳比越小、溫度越高、WHSV越小時,滯留時間之誤差越大,其中水碳比2,溫度為800°C,WHSV為5 h-1之甲烷蒸汽重組反應器於觸媒床之滯留時間的誤差提升至52.80%,而吸附助效反應器之平均速度分析,前三階段與甲烷蒸汽重組反應器相同(分別為擴散控制、溫度控制、重組反應控制),最後再加上吸附反應控制,而此階段是所有區域中誤差最大的,滯留時間之誤差來到39.75%,而滯留時間的誤差越大,表示反應物於觸媒床的化學反應時間越短,產氫效能較差。
吸附助效反應器中氧化鈣轉化率的部份,藉由改變水碳比觀測其氧化鈣轉化率與二氧化碳吸附量,數值模擬結果顯示,當水碳比越高其終止時間會延後且整體氧化鈣轉化率值越高,二氧化碳吸附量也越多,其中水碳比5之操作終止時間延後至1753秒,整體氧化鈣轉化率提升至56.85%,二氧化碳吸附量為17.85克。
In this study, the velocity analysis of methane steam reforming with or without sorption enhancement by numerical simulation. According to different operating conditions, it is found that which reactor has a larger relative error in the average velocity and residence time, and it is found that the S/C ratio reaches the operation termination time in the sorption enhanced reactor, which has the better calcium oxide conversion rate.
In the part of velocity analysis of methane steam reforming with or without sorption enhancement, by varying operating conditions, it is discussed which reactor has a larger relative error of the residence time. The estimated value is the residence time derived from the inlet velocity, while the actual value is the real residence time of the gas in the catalyst bed. The numerical simulation results show that the error of the residence time is larger when the S/C ratio is smaller, the temperature is higher, and the WHSV is smaller. For the methane steam reforming reactor with S/C ratio of 2, the temperature of 800°C, and the WHSV of 5 h-1, the error of the residence time in the catalyst bed increased to 52.80%, and the average velocity analysis of the sorption enhanced reactor showed that the first three stages were the same as the methane steam reforming reactor (respectively, diffusion control, temperature control, and reforming reaction control), and the Region IV is the sorption reaction control, the region has the largest relative error among all regions, the error of residence time up to 39.75%. The larger the error of residence time, the shorter the chemical reaction time of reactants in the catalyst bed, and the worse the hydrogen production efficiency.
In the part of the conversion rate of calcium oxide in the sorption enhanced reactor, the conversion rate of calcium oxide and the amount of carbon dioxide adsorption are observed by changing the S/C ratio. The numerical simulation results show that the higher the S/C ratio, the longer the termination time, the higher the overall calcium oxide conversion rate, and the more carbon dioxide adsorption. The operation termination time of the S/C ratio of 5 is delayed to 1753 seconds, the overall calcium oxide conversion rate is increased to 56.85%, and the carbon dioxide adsorption amount is 17.85 grams.
摘要 i
Abstract ii
目錄 iv
表目錄 vii
圖目錄 ix
符號說明 xii
第一章 緒論 1
1.1 前言 1
1.2 產氫方式 3
1.2.1 蒸汽重組(Steam reforming, SR) 3
1.2.2 部分氧化(Partial oxidation, POX) 6
1.2.3 自熱重組(Autothermal reforming, ATR) 8
1.3 文獻回顧 9
1.3.1 甲烷蒸汽重組 9
1.3.2 氧化鈣吸附反應 10
1.3.3 吸附助效甲烷蒸汽重組反應 12
1.3.4 反應器逆流(RF)操作 13
1.4 研究目的 14
第二章 數學模式與數值方法 16
2.1 反應器 16
2.1.1 甲烷蒸汽重組之反應器模型 16
2.1.2 吸附助效甲烷蒸汽重組之反應器模型 18
2.2 基本假設 20
2.3 統御方程式 21
2.3.1 質量守恆方程式 21
2.3.2 動量守恆方程式 22
2.3.3 能量守恆方程式 23
2.3.4 成分方程式 24
2.4 化學反應式 24
2.4.1 甲烷蒸汽重組反應模式 25
2.4.2 氧化鈣吸附反應模式 27
2.5 邊界條件 30
2.6 數值方法 31
第三章 結果與討論 32
3.1 模型驗證 32
3.1.1 甲烷蒸汽重組器(MSR) 32
3.1.2 吸附助效甲烷蒸汽重組器(SESMR) 34
3.2 操作終止條件定義 35
3.3 甲烷蒸汽重組器之反應器內流速分析 36
3.3.1 不同水碳比(S/C= 2~5) 36
3.3.2 不同溫度(T = 600~800℃) 48
3.3.3 不同WHSV(5 h-1、10 h-1、20 h-1) 60
3.3.4 不同操作變因下的實際速度、估算速度與滯留時間分析 70
3.4 吸附助效甲烷蒸汽重組器之反應器內流速分析 82
3.4.1 平均速度分析 85
3.4.2 平均溫度分析 89
3.4.3 反應速率分析 92
3.4.4 平均分子量與莫耳濃度分析 95
3.4.5 質量流率與氧化鈣轉化率分析 99
3.4.6 實際速度、估算速度與滯留時間分析 102
3.5 SESMR於不同水碳比之二氧化碳吸附量與氧化鈣轉化率 103
3.6 SESMR於不同水碳比之甲烷轉化率與氫產量 112
3.7 SESMR之同溫反轉 114
第四章 結論與未來建議 116
4.1 結論 116
4.2 未來建議 117
參考文獻 118
[1] 能源統計年報 - 綜合類 - 經濟部能源局(Bureau of Energy, Ministry of Economic Affairs, R.O.C.)全球資訊網.
[2] Statistics I. Key world energy statistics. Paris International Energy Agency. 2020.
[3] Ferreira‐Aparicio P, Benito M, Sanz J. New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers. Catalysis Reviews. 2005;47:491-588.
[4] 曲新生, 陳發林, 呂錫民(2007)。產氫與儲氫技術。台北市:五南.
[5] García L. Hydrogen production by steam reforming of natural gas and other nonrenewable feedstocks. Compendium of hydrogen energy: Elsevier; 2015. p. 83-107.
[6] Hidalgo‐Vivas A, Cooper B. Sulfur removal methods. Handbook of Fuel Cells. 2010.
[7] Pirklbauer J, Schöny G, Zerobin F, Pröll T, Hofbauer H. Optimization of stage numbers in a multistage fluidized bed temperature swing adsorption system for CO2 capture. Energy Procedia. 2017;114:2173-81.
[8] Mason JA, Sumida K, Herm ZR, Krishna R, Long JR. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy & Environmental Science. 2011;4:3030-40.
[9] York AP, Xiao T, Green ML. Brief overview of the partial oxidation of methane to synthesis gas. Topics in Catalysis. 2003;22:345-58.
[10] Pina J, Borio DO. Modeling an simulation of an autothermal reformer. Latin American applied research. 2006;36:289-94.
[11] Zhai X, Ding S, Liu Z, Jin Y, Cheng Y. Catalytic performance of Ni catalysts for steam reforming of methane at high space velocity. Int J Hydrogen Energ. 2011;36:482-9.
[12] Tonkovich ALY, Yang B, Perry ST, Fitzgerald SP, Wang Y. From seconds to milliseconds to microseconds through tailored microchannel reactor design of a steam methane reformer. Catal Today. 2007;120:21-9.
[13] Karakaya M, Keskin S, Avci AK. Parametric study of methane steam reforming to syngas in a catalytic microchannel reactor. Applied Catalysis A: General. 2012;411:114-22.
[14] Zhai X, Cheng Y, Zhang Z, Jin Y, Cheng Y. Steam reforming of methane over Ni catalyst in micro-channel reactor. Int J Hydrogen Energ. 2011;36:7105-13.
[15] Zhai X, Ding S, Cheng Y, Jin Y, Cheng Y. CFD simulation with detailed chemistry of steam reforming of methane for hydrogen production in an integrated micro-reactor. Int J Hydrogen Energ. 2010;35:5383-92.
[16] Chen K, Zhao Y, Zhang W, Feng D, Sun S. The intrinsic kinetics of methane steam reforming over a nickel-based catalyst in a micro fluidized bed reaction system. Int J Hydrogen Energ. 2020;45:1615-28.
[17] Annesini M, Piemonte V, Turchetti L. Carbon formation in the steam reforming process: a thermodynamic analysis based on the elemental composition. Chemical Engineering. 2007;11.
[18] Xu J, Chen L, Tan KF, Borgna A, Saeys M. Effect of boron on the stability of Ni catalysts during steam methane reforming. Journal of Catalysis. 2009;261:158-65.
[19] Abbas SZ, Dupont V, Mahmud T. Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int J Hydrogen Energ. 2017;42:2889-903.
[20] Khzouz M, Gkanas EI. Experimental and numerical study of low temperature methane steam reforming for hydrogen production. Catalysts. 2017;8:5.
[21] Iglesias I, Forti M, Baronetti G, Mariño F. Zr-enhanced stability of ceria based supports for methane steam reforming at severe reaction conditions. Int J Hydrogen Energ. 2019;44:8121-32.
[22] Grasa GS, Abanades JC. CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Industrial & Engineering Chemistry Research. 2006;45:8846-51.
[23] Lysikov AI, Salanov AN, Okunev AG. Change of CO2 carrying capacity of CaO in isothermal recarbonation− decomposition cycles. Industrial & Engineering Chemistry Research. 2007;46:4633-8.
[24] Dou B, Song Y, Liu Y, Feng C. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor. J Hazard Mater. 2010;183:759-65.
[25] Fernandez J, Abanades J, Grasa G. Modeling of sorption enhanced steam methane reforming—Part II: Simulation within a novel Ca/Cu chemical loop process for hydrogen production. Chemical engineering science. 2012;84:12-20.
[26] Abbas SZ, Dupont V, Mahmud T. Modelling of H2 production in a packed bed reactor via sorption enhanced steam methane reforming process. Int J Hydrogen Energ. 2017;42:18910-21.
[27] Neni A, Benguerba Y, Balsamo M, Erto A, Ernst B, Benachour D. Numerical study of sorption-enhanced methane steam reforming over Ni/Al2O3 catalyst in a fixed-bed reactor. International Journal of Heat and Mass Transfer. 2021;165:120635.
[28] Faheem HH, Tanveer HU, Abbas SZ, Maqbool F. Comparative study of conventional steam-methane-reforming (SMR) and auto-thermal-reforming (ATR) with their hybrid sorption enhanced (SE-SMR & SE-ATR) and environmentally benign process models for the hydrogen production. Fuel. 2021;297:120769.
[29] Kaisare NS, Lee JH, Fedorov AG. Hydrogen generation in a reverse‐flow microreactor: 1. Model formulation and scaling. Aiche J. 2005;51:2254-64.
[30] Kaisare NS, Lee JH, Fedorov AG. Hydrogen generation in a reverse‐flow microreactor: 2. Simulation and analysis. Aiche J. 2005;51:2265-72.
[31] Hoang D, Chan S, Ding O. Kinetic and modelling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support. Chem Eng J. 2005;112:1-11.
[32] Chen C-H, Yu C-T, Chen W-H. Improvement of steam methane reforming via in-situ CO2 sorption over a nickel-calcium composite catalyst. Int J Hydrogen Energ. 2021;46:16655-66.
[33] Shu J, Grandjean BP, Kaliaguine S. Methane steam reforming in asymmetric Pd-and Pd-Ag/porous SS membrane reactors. Applied Catalysis A: General. 1994;119:305-25.
[34] Phanikumar M, Mahajan R. Non-Darcy natural convection in high porosity metal foams. International journal of heat and mass transfer. 2002;45:3781-93.
[35] Francesconi JA, Mussati MC, Aguirre PA. Analysis of design variables for water-gas-shift reactors by model-based optimization. J Power Sources. 2007;173:467-77.
[36] Poling BE, O'Connell JP, Prausnitz JM, ProQuest. The properties of gases and liquids. 5th ed. New York: McGraw-Hill; 2001.
[37] Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. 2nd edition ed. Hoboken, NJ: Wiley; 2002.
[38] Xu JG, Froment GF. Methane Steam Reforming, Methanation and Water-Gas Shift .1. Intrinsic Kinetics. Aiche J. 1989;35:88-96.
[39] Hou KH, Hughes R. The kinetics of methane steam reforming over a Ni/alpha-Al2O catalyst. Chem Eng J. 2001;82:311-28.
[40] Rout KR, Jakobsen HA. A numerical study of pellets having both catalytic- and capture properties for SE-SMR process: Kinetic- and product layer diffusion controlled regimes. Fuel Process Technol. 2013;106:231-46.
[41] Li YH, Wang YQ, Zhang XW, Mi ZT. Thermodynamic analysis of autothermal steam and CO2 reforming of methane. Int J Hydrogen Energ. 2008;33:2507-14.
[42] Antzara A, Heracleous E, Bukur DB, Lemonidou AA. Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture. Int J Greenh Gas Con. 2015;32:115-28.
[43] Sadooghi P, Rauch R. Pseudo heterogeneous modeling of catalytic methane steam reforming process in a fixed bed reactor. J Nat Gas Sci Eng. 2013;11:46-51.
[44] Radfarnia HR, Iliuta MC. Development of Al-stabilized CaO-nickel hybrid sorbent-catalyst for sorption-enhanced steam methane reforming. Chem Eng Sci. 2014;109:212-9.
[45] Aihara M, Nagai T, Matsushita J, Negishi Y, Ohya H. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction. Appl Energ. 2001;69:225-38.
[46] Sircar S, Golden TC. Purification of hydrogen by pressure swing adsorption. Separ Sci Technol. 2000;35:667-87.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *