帳號:guest(3.16.79.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):宋俊逸
作者(外文):Sung, Chun-Yi
論文名稱(中文):適用於5G智慧手機的超薄均溫板開發及暫態與穩態性能測試
論文名稱(外文):Transient and Steady-state Performance of Novel Ultra-Thin Vapor Chambers for 5G Smartphones
指導教授(中文):王訓忠
指導教授(外文):Wong, Shwin-Chung
口試委員(中文):許文震
吳世國
口試委員(外文):Sheu, Wen-Jenn
Wu, Shih-Kuo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033502
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:70
中文關鍵詞:超薄均溫板5G手機暫態響應反應時間蒸汽流道厚度最大熱傳量均溫板熱阻部分乾化
外文關鍵詞:Ultra-Thin Vapor Chamber5G smartphonesTransient responseVapor duct thicknessMaximum heat loadVapor chamber thermal resistancePartial dryout
相關次數:
  • 推薦推薦:0
  • 點閱點閱:241
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究因應5G手機的需求,製作面積為60 × 60 mm2,厚度(t)分別為0.3 mm、0.25 mm、0.2 mm之銅/水超薄均溫板(Ultra-Thin Vapor Chamber, UTVC),其蒸汽流道厚度(h)分別為0.14 mm、0.1 mm 與0.07 mm。針對此三種h的UTVC及對應厚度的無氧銅片分別進行穩態強制對流實驗測試與暫態自然對流實驗。穩態測試採用埋設2支熱電偶以量測輸入熱量(Qact)之10 × 10 mm2加熱銅柱上表面作為熱源,銅柱上表面另埋設一熱電偶以量測熱源溫度(Tj),再搭配與UTVC接觸面埋設5支熱電偶以量測冷凝面平均溫度的水冷套作冷卻。水平方位下,三種UTVC之最大熱傳量(Qmax)分別為15 W、11 W、8 W,熱阻(Rvc)分別為0.09、0.19、0.25 K/W。當超過Qmax後蒸發區會開始進入部分乾化,此時UTVC仍可運作,但加熱面溫度與Rvc會以極緩慢的速度上升而漸達平衡。當擺放角度為垂直擺放與反轉逆平行時,UTVC之Qmax並無衰退,部分UTVC的Qmax¬¬¬甚至有小幅度增加,顯示當h ≤ 0.14 mm時UTVC具有優異抗重力能力。
暫態測試採用10 × 10 mm2陶瓷加熱片作為熱源,其上貼附一10 × 10 × 0.6 mm3無氧銅片以埋設一量測Tj的熱電偶並作均溫,冷凝表面採用自然對流作冷卻且以紅外線測像儀測溫。測試結果顯示,h=0.14 mm之UTVC在輸入功率(Qin) ≤ 12 W時,暫態加熱過程均無部份乾化現象,Tj皆低於相同0.3 mm厚度的無氧銅片;h=0.1 mm之UTVC在Qin ≤ 6 W且注水填充率(γ)略高於1時優於相同0.25 mm厚度的無氧銅片;h=0.07 mm之UTVC在Qin ≤ 4 W且γ略高於1時優於相同0.2 mm厚度的無氧銅片。然Qin增加但尚未達到穩態Qmax前,蒸發區出現部分乾化現象,此時採用UTVC的Tj可能高於採用無氧銅片者。無論注水γ是否大於1,UTVC皆有聚水現象發生,但對UTVC性能無明顯影響。適度增加注水量反而有助於毛細回水,尤其是暫態行為表現較佳。
To meet the thermal need of 5G smartphones, novel ultra-thin vapor chambers (UTVC) are designed and tested with a footprint of 60 × 60 mm2 and a thickness (t) of 0.3 mm, 0.25 mm, or 0.2 mm. Their vapor duct thickness (h) is 0.14, 0.1, or 0.07 mm, respectively. These UTVCs, as well as copper plates with the same thicknesses, are tested under steady state by water cooling and transient state by natural convection. The stand for steady-state tests includes a 10 × 10 mm2 copper heating rod, embedded with two thermocouples for heat input (Qact) measurement. The top heating surface is embedded with another thermocouple to measure the heating surface temperature (Tj). A water-cooled cold plate, whose bottom surface being embedded with 5 thermocouples for the measurement of average condenser temperature, is used for cooling. Under steady state, the UTVC with h = 0.14, 0.10, or 0.07 mm exhibit a Qmax of 15 W, 12 W, or 8 W and a thermal resistance (Rvc) of 0.09, 0.19, or 0.25 K/W, respectively. Local dryout occurs beyond Qmax but the UTVC can still operate, with Tj and Rvc increasing at a very slow rate until equilibrium. When placed vertically or horizontally reversed, the UTVC may display even a slightly higher Qmax, showing the excellent anti-gravity ability of the novel UTVC.
The stand for transient tests includes a 10 × 10 mm2 ceramic heater, covered with a 10 × 10 × 0.6 mm3 for thermocouple embedment and temperature uniformity. The condensation surface is cooled by natural convection and imaged using an infrared recorder for temperature measurement. The results show that the UTVC with h=0.14 mm outperform the 0.3 mm-thick copper sheet for Qin ≤ 12 W, when local dryout has not appeared. The UTVC with h=0.1 mm outperforms the 0.25 mm copper sheet as Qin ≤ 6 W and the filling ratio () is slightly higher than 1. Similarly, the UTVC with h=0.07 mm is better than the 0.2 mm copper sheet as Qin ≤ 4 W. Capillary blocking occurs for all filling ratios, without obvious influence to UTVC performance. Moderate over-charge is favorable to UTVC performance by delaying dryout, especially for the transient behavior.
摘要 i
Abstract ii
誌謝辭 iv
目錄 v
表目錄 vii
圖目錄 viii
符號表 xi
第一章 緒論 1
1.1. 研究背景 1
1.2. 均溫板工作原理 2
1.3. 文獻回顧 3
1.3.1 超薄熱管與超薄均溫板 3
1.3.2 暫態響應 12
1.4. 研究動機與目的 16
第二章 實驗方法 18
2.1. 均溫板設計參數與製作 18
2.1.1. 均溫板設計 18
2.1.2. 製作設備 20
2.1.3. 製作步驟 22
2.2. 穩態強制對流冷卻實驗 26
2.2.1. 實驗設備與架構 26
2.2.2. 實驗步驟 30
2.2.3. 實驗參數 30
2.2.4. 實驗誤差分析 32
2.3. 暫態自然對流冷卻實驗 32
2.3.1. 實驗設備與架構 32
2.3.2. 實驗步驟 37
2.3.3. 實驗參數 38
第三章 結果與討論 40
3.1. 穩態強制對流 40
3.1.1 最大熱傳量與UTVC熱阻 40
3.1.2 部分乾化現象 42
3.2. 暫態自然對流 45
3.2.1 均溫性與IR照片 45
3.2.2 定瓦數下各UTVC與銅片比較 53
第四章 結論 60
參考文獻 62
附錄A UTVC熱阻對壓力變化敏感度測試 66
附錄B 陶瓷電熱片與0.6 mm銅片乾燒測試 67
附錄C UTVC聚水測試 69
[1] Y. Yadavalli, J.A. Weibel, S.V. Garimella, Ieee, Flat Heat Pipe Performance Thresholds at Ultra-Thin Form Factors, in: 14th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), Orlando, FL, 2014, pp. 527-534.
[2] H. Tang, Y. Tang, Z.P. Wan, J. Li, W. Yuan, L.S. Lu, Y. Li, K.R. Tang, Review of applications and developments of ultra-thin micro heat pipes for electronic cooling, Applied Energy, 223 (2018) 383-400.
[3] M. Mochizuki, T. Nguyen, Review of thin vapor chamber design, performance and lifetime reliability, Frontiers in Heat and Mass Transfer, 13-12 (2019).
[4] S.-C. Wong, K.-C. Hsieh, J.-D. Wu, W.-L. Han, A novel vapor chamber and its performance, International Journal of Heat and Mass Transfer, 53(11-12) (2010) 2377-2384.
[5] S.-C. Wong, S.-F. Huang, K.-C. Hsieh, Performance tests on a novel vapor chamber, Applied Thermal Engineering, 31 (2011) 1757-1762.
[6] S.-C. Wong. K.-C. Hsieh, Performance tests on 0.4mm-thick novel ultra-thin vapor chambers, in: Joint 19th International Heat Pipe Conference & 13th International Heat Pipe Symposium, Pisa, Italy, 2018.
[7] Z.S. Chen, Y. Li, W.J. Zhou, L.Q. Deng, Y.Y. Yan, Design, fabrication and thermal performance of a novel ultra-thin vapour chamber for cooling electronic devices, Energy Conversion and Management, 187 (2019) 221-231.
[8] G.W. Huang, W.Y. Liu, Y.Q. Luo, Y. Li, A novel ultra-thin vapor chamber for heat dissipation in ultra-thin portable electronic devices, Applied Thermal Engineering, 167 (2020).
[9] G.W. Huang, W.Y. Liu, Y.Q. Luo, Y. Li, H.Y. Chen, A new ultra-thin vapor chamber with composite wick for thin electronic products, International Journal of Thermal Sciences, 170 (2021).
[10] G. Patankar, J.A. Weibel, S.V. Garimella, On the transient thermal response of thin vapor chamber heat spreaders: Governing mechanisms and performance relative to metal spreaders, International Journal of Heat and Mass Transfer, 136 (2019) 995-1005.
[11] Y. Li, J.B. He, H.F. He, Y.Y. Yan, Z.X. Zeng, B. Li, Investigation of ultra-thin flattened heat pipes with sintered wick structure, Applied Thermal Engineering, 86 (2015) 106-118.
[12] G. Patankar, J.A. Weibel, S.V. Garimella, Patterning the condenser-side wick in ultra-thin vapor chamber heat spreaders to improve skin temperature uniformity of mobile devices, International Journal of Heat and Mass Transfer, 101 (2016) 927-936.
[13] G. Patankar, J.A. Weibel, S.V. Garimella, Working-fluid selection for minimized thermal resistance in ultra-thin vapor chambers, International Journal of Heat and Mass Transfer, 106 (2017) 648-654.
[14] G.W. Huang, W.Y. Liu, Y.Q. Luo, T. Deng, Y. Li, H.Y. Chen, Research and optimization design of limited internal cavity of ultra-thin vapor chamber, International Journal of Heat and Mass Transfer, 148 (2020).
[15] S.M.I. Saad, C.Y. Ching, D. Ewing, The transient response of wicked heat pipes with non-condensable gas, Applied Thermal Engineering, 37 (2012) 403-411.
[16] Y.-C. Li, S.-C. Wong, Effects of vapor duct thickness on the capillary blocking and thermal performance of ultra-thin vapor chambers under natural convection cooling, Applied Thermal Engineering, 195 (2021).
[17] N. Zhu, K. Vafai, Analytical modeling of the startup characteristics of asymmetrical flat-plate and diskshaped heat pipes, International Journal of Heat and Mass Transfer, 41 (1998) 2619-2637.
[18] C.B. Sobhan, S.V. Garimella and V.V. Unnikrishnan, A computational model for the transient analysis of flat heat pipes, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069), 2000, pp. 106-113 vol. 2.
[19] J.M. Tournier, M.S. El-Genk, A heat pipe transient analysis model, International Journal of Heat and Mass Transfer, 37(5) (1994) 753-762.
[20] M. Famouri, M. M. Abdollahzadeh, A. Abdulshaheed, G. Huang, G. Carbajal, C. Li, Transient analysis of a cylindrical heat pipe considering different wick structures, Heat Transfer Summer Conference, Washington, DC, USA (2016)
[21] Prasher, R. S. A simplified conduction based modeling scheme for design sensitivity study of thermal solution utilizing heat pipe and vapor chamber technology. ASME. J. Electron. Packag. September 2003; 125(3): 378–385.
[22] C. Ferrandi, F. Iorizzo, M. Mameli, S. Zinna, M. Marengo, Lumped parameter model of sintered heat pipe: Transient numerical analysis and validation, Applied Thermal Engineering, 50 (2013) 1280-1290.
[23] Mohamed S. El-Genk, Huang Lianmin, An experimental investigation of the transient response of a water heat pipe, International Journal of Heat and Mass Transfer, 36 (1993) 3823-3830.
[24] Junye Wang, Experimental investigation of the transient thermal performance of a bent heat pipe with grooved surface, Applied Energy, 86 (2009) 2030-2037.
[25] Jarosław Legierski, Bogusław Wie¸cek, Gilbert de Mey, Measurements and simulations of transient characteristics of heat pipes, Microelectronics Reliability, 46 (2006) 109-115.
[26] T.E. Tsai, G.W. Wu, C.C. Chang, W.P. Shih, S.L. Chen, Dynamic test method for determining the thermal performances of heat pipes, International Journal of Heat and Mass Transfer, 53(21) (2010) 4567-4578.
[27] 李元鈞,超薄均溫板蒸汽流道深度研究與性能測試,國立清華大學碩士論文, 2021.
[28] 林庭右,新型超薄均溫板熱性能之簡化數值模型,國立清華大學碩士論文, 2022.
[29] J. Carvill, Thermodynamics and Heat Transfer, in: J. Carvill (Ed.) Mechanical Engineer's Data Handbook, Butterworth-Heinemann, Oxford, 1993, pp. 102-145.
[30] 鄧茂燊,採用三重複合式銅網/溝槽/銅粉毛細之平板熱管在不同傾角及工作流體下之可視化實驗,國立清華大學碩士論文, 2021.
(此全文20250808後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *