帳號:guest(3.16.82.184)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):金伯霄
作者(外文):Jin, Bo-Xiao
論文名稱(中文):對基於插值的晶格波茲曼法對複雜流場模擬表現的探討
論文名稱(外文):Investigating the Performance of Interpolation-Based Lattice Boltzmann Method in Complex Flows
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):陳慶耀
陳明志
口試委員(外文):Chen, Ching-Yao
Chern, Ming-Jyh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033467
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:86
中文關鍵詞:晶格波茲曼法非均勻網格紊流模擬直接數值模擬
外文關鍵詞:lattice Boltzmann methodinterpolation streaming stepnon-uniform gridsturbulent flowdirect numerical simulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:70
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文研究了插值補充晶格波茲曼法(ISLBM)和半拉格朗日晶格波茲曼法(SLLBM)在類比複雜流動方面的性能。分析考慮了正交坐標系中的不同插值階數,探討了它們對層流流場和湍流流場的影響。使用不同的插值階數對三維泰勒-格林漩渦進行了模擬,揭示了耗散率的變化。採用六階插值的 ISLBM 與晶格波茲曼法(LBM)的解決方案非常相似,而 SLLBM 則傾向於高估耗散。提高網格解析度可以提高耗散率預測的準確性。在類比壁界湍流通道流時,SLLBM 顯示出不穩定性,而 ISLBM 保持穩定。六階插值法在預測湍流耗散率時表現出卓越的性能,同時產生了合理的計算開銷。此外,論文還探討了曲線座標下的流場模擬,強調了投影對流場模擬結果的影響。變形角度的增大使得精確的動能值和耗散率值的獲取面臨挑戰,過度變形會導致模型的某些部分不穩定。
This thesis investigates the performance of the interpolation-supplemented lattice Boltzmann method (ISLBM) and the semi-Lagrangian lattice Boltzmann method (SLLBM) in simulating complex flows. The analysis considers different interpolation orders in the orthogonal coordinate system, exploring their impact from laminar to turbulent flow fields. Simulations of the three-dimensional Taylor-Green vortex are conducted using various interpolation orders, revealing variations in dissipation rates. The ISLBM with sixth-order interpolation closely resembles the lattice Boltzmann method (LBM) solution, while the SLLBM tends to overestimate dissipation. Increasing the grid resolution improves the accuracy of dissipation rate predictions. In the simulation of wall-bounded turbulent channel flow, the SLLBM exhibits instability, while the ISLBM remains stable. The sixth-order interpolation demonstrates superior performance while predicting turbulence dissipation rate producing reasonable computational overhead. Furthermore, the thesis explores the simulation of flow fields in curvilinear coordinates, highlighting the effect of the projection on the results of the flow fields simulation. Increasing deformation angles make accurate kinetic energy while dissipation rate values are challenging to obtain, with excessive deformation causing instability in certain components of the model.
Abstract i
Acknowledgment ii
List of Figures vii
List of Tables x
1 Introduction 1
1.1 Motivation and objective . . . . . . . . . . . . . . . . . 1
1.2 Literature survey . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Simulation of 3-D turbulent flow with the lattice Boltzmann method in non-square grids . . . . . . . . . . . . . . . . . .3
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . 5
2 The lattice Boltzmann method 6
2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . .6
2.1.1 H-Theorem . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Bhatnagar-Gross-Krook model . . . . . . . . . . . . . . 8
2.2 The lattice Boltzmann method . . . . . . . . . . . . . . .9
2.2.1 Chapman-Enskog Analysis . . . . . . . . . . . . . . . . 11
2.3 Boundary condition implementations . . . . . . . . . . . .13
2.3.1 Non-equilibrium bounce-back boundary condition . . . . .13
2.3.2 Halfway bounce-back boundary condition . . . . . . . . .14
2.4 Parallel Algorithm . . . . . . . . . . . . . . . . . . . .15
3 Interpolation-based lattice Boltzmann method 19
3.1 Semi-Lagrangian lattice Boltzmann method . . . . . . . . .20
3.2 Interpolation-supplemented lattice Boltzmann method . . . 21
3.3 Defining the relationship between mesh size and lattice size . . . . . . . . . . . . 22
4 Influence of interpolation order 25
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . .25
4.2 Analytical solution in fully developed laminar Poiseuille channel flow . . . . . . 26
4.3 Three-dimensional Taylor-Green vortex . . . . . . . . . . 31
4.4 Turbulent Poiseuille channel flow . . . . . . . . . . . . 36
4.4.1 semi-Lagrangian lattice Boltzmann method . . . . . . . .36
4.4.2 Interpolation-supplemented lattice Boltzmann method . . 40
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Effect of distortion of interpolation stencils 50
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . .50
5.2 Three-dimensional Taylor-Green vortex . . . . . . . . . . 51
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 57
6 Contributions and future recommendations 58
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Major contributions . . . . . . . . . . . . . . . . . . . 60
6.3 Future recommendations . . . . . . . . . . . . . . . . . .60
6.3.1 Flow over periodic hills . . . . . . . . . . . . . . . .60
6.3.2 Extend to compressible flows and multi-phase flows . . .61
Appendix A Derivation of analytical solutions 62
[1] Cyrus K Aidun and Jonathan R Clausen. Lattice-Boltzmann method for complex flows. Annual review of fluid mechanics, 42:439–472, 2010.
[2] Che-Yu Lin and Chao-An Lin. Direct numerical simulations of turbulent channel flow with polymer additives. Journal of Mechanics, 36(5):691–698, 2020.
[3] Fran¸cois Dubois, Chao-An Lin, and Mohamed Mahdi Tekitek. Anisotropic thermal lattice Boltzmann simulation of 2D natural convection in a square cavity. Computers & Fluids, 124:278–287, 2016.
[4] Tzu-Chun Huang, Chien-Yi Chang, and Chao-An Lin. Simulation of droplet dynamic with high density ratio two-phase lattice Boltzmann model on multi-GPU cluster. Computers & Fluids, 173:80–87, 2018.
[5] Yusuke Kuwata, Koji Tsuda, and Kazuhiko Suga. Direct numerical simulation of turbulent conjugate heat transfer in a porous-walled duct flow. Journal of Fluid Mechanics, 904:A9, 2020.
[6] Olga Filippova and Dieter H¨anel. Grid refinement for lattice-BGK models. Journal of computational Physics, 147(1):219–228, 1998.
[7] Chung-Ming Wu, You-Sheng Zhou, and Chao-An Lin. Direct numerical simulations of turbulent channel flows with mesh-refinement lattice Boltzmann methods on GPU cluster. Computers & Fluids, 210:104647, 2020.
[8] Xiaoyi He, Li-Shi Luo, and Micah Dembo. Some progress in lattice Boltzmann method. Part I. Nonuniform mesh grids. Journal of computational Physics, 129(2):357–363, 1996.
[9] Xiaoyi He and Gary Doolen. Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder. Journal of Computational Physics, 134(2):306–315, 1997.
[10] M Cheng and Kin Chew Hung. Lattice Boltzmann method on nonuniform mesh. International Journal of Computational Engineering Science, 5(02):291–302, 2004.
[11] Andreas Kr¨amer, Knut K¨ullmer, Dirk Reith, Wolfgang Joppich, and Holger Foysi. Semilagrangian off-lattice Boltzmann method for weakly compressible flows. Physical Review E, 95(2):023305, 2017.
[12] Giovanni Di Ilio, Benedikt Dorschner, Gino Bella, Sauro Succi, and Iliya V Karlin. Simulation of turbulent flows with the entropic multirelaxation time lattice Boltzmann method on body-fitted meshes. Journal of Fluid Mechanics, 849:35–56, 2018.
[13] Francesca Nannelli and Sauro Succi. The lattice Boltzmann equation on irregular lattices. Journal of Statistical Physics, 68:401–407, 1992.
[14] Gongwen Peng, Haowen Xi, Comer Duncan, and So-Hsiang Chou. Lattice Boltzmann method on irregular meshes. Physical Review E, 58(4):R4124, 1998.
[15] Gongwen Peng, Haowen Xi, Comer Duncan, and So-Hsiang Chou. Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Physical Review E, 59(4):4675, 1999.
[16] Taehun Lee and Ching-Long Lin. An Eulerian description of the streaming process in the lattice Boltzmann equation. Journal of Computational Physics, 185(2):445–471, 2003.
[17] JMVA Koelman. A simple lattice Boltzmann scheme for Navier-Stokes fluid flow. Europhysics Letters, 15(6):603, 1991.
[18] Vanja Zecevic, Michael P Kirkpatrick, and Steven W Armfield. Rectangular lattice Boltzmann method using multiple relaxation time collision operator in two and three dimensions. Computers & Fluids, 202:104492, 2020.
[19] Lian-Ping Wang, Haoda Min, Cheng Peng, Nicholas Geneva, and Zhaoli Guo. A lattice-Boltzmann scheme of the Navier–Stokes equation on a three-dimensional cuboid lattice. Computers & Mathematics with Applications, 78(4):1053–1075, 2019.
[20] Peng Wang, Lian-Ping Wang, and Zhaoli Guo. Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows. Physical Review E, 94(4):043304, 2016.
[21] Yuntian Bo, Peng Wang, Zhaoli Guo, and Lian-Ping Wang. DUGKS simulations of three-dimensional Taylor–Green vortex flow and turbulent channel flow. Computers & Fluids, 155:9–21, 2017.
[22] Misun Min and Taehun Lee. A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows. Journal of Computational Physics, 230(1):245–259, 2011.
[23] Andreas Kr¨amer, Dominik Wilde, Knut K¨ullmer, Dirk Reith, Holger Foysi, and Wolfgang Joppich. Lattice Boltzmann simulations on irregular grids: Introduction of the NATriuM library. Computers & Mathematics with Applications, 79(1):34–54, 2020.
[24] Dominik Wilde, Andreas Kr¨amer, Dirk Reith, and Holger Foysi. Semi-Lagrangian lattice Boltzmann method for compressible flows. Physical Review E, 101(5):053306, 2020.
[25] Harold Grad. On the kinetic theory of rarefied gases. Communications on pure and applied mathematics, 2(4):331–407, 1949.
[26] Sydney Chapman and Thomas George Cowling. The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge university press, 1990.
[27] Carlo Cercignani, Reinhard Illner, and Mario Pulvirenti. The mathematical theory of dilute gases, volume 106. Springer Science & Business Media, 2013.
[28] Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. A model for collision processes in gases. i. Small amplitude processes in charged and neutral one-component systems. Physical review, 94(3):511, 1954.
[29] Alexander N Gorban and Iliya V Karlin. General approach to constructing models of the Boltzmann equation. Physica A: Statistical Mechanics and its Applications, 206(3-4):401–420, 1994.
[30] JL Lebowitz, HL Frisch, and E Helfand. Nonequilibrium distribution functions in a fluid. The Physics of Fluids, 3(3):325–338, 1960.
[31] Xiaoyi He and Li-Shi Luo. A priori derivation of the lattice boltzmann equation. Physical Review E, 55(6):R6333, 1997.
[32] Xiaoyi He and Li-Shi Luo. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Physical review E, 56(6):6811, 1997.
[33] Xiaoyi He, Qisu Zou, Li-Shi Luo, and Micah Dembo. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. Journal of Statistical Physics, 87:115–136, 1997.
[34] Dieter A Wolf-Gladrow. Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Springer, 2004.
[35] Zhaoli Guo and Chang Shu. Lattice Boltzmann method and its application in engineering, volume 3. World Scientific, 2013.
[36] Qisu Zou and Xiaoyi He. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of fluids, 9(6):1591–1598, 1997.
[37] Hung-Wen Chang, Anshul Garg, and Chao-An Lin. Analytic solutions of the variable force effect in lattice Boltzmann methods for Poiseuille flows. Physics of Fluids, 33(8):083610, 2021.
[38] R´emi Cornubert, Dominique d’Humi`eres, and David Levermore. A Knudsen layer theory for lattice gases. Physica D: Nonlinear Phenomena, 47(1-2):241–259, 1991.
[39] Anthony JC Ladd. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of fluid mechanics, 271:285–309, 1994.
[40] Anthony JC Ladd. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. Journal of fluid mechanics, 271:311–339, 1994.
[41] Hung-Wen Chang, Pei-Yao Hong, Li-Song Lin, and Chao-An Lin. Simulations of flow instability in three-dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units. Computers & Fluids, 88:866–871, 2013.
[42] Pei-Yao Hong, Li-Min Huang, Li-Song Lin, and Chao-An Lin. Scalable multi-relaxation time lattice Boltzmann simulations on the multi-GPU cluster. Computers & Fluids, 110:1–8, 2015.
[43] You-Hsun Lee, Li-Min Huang, You-Seng Zou, Shao-Ching Huang, and Chao-An Lin. Simulations of turbulent duct flow with lattice Boltzmann method on GPU cluster. Computers & Fluids, 168:14–20, 2018.
[44] Geoffrey Ingram Taylor and Albert Edward Green. Mechanism of the production of small eddies from large ones. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 158(895):499–521, 1937.
[45] Hiroyuki Abe, Hiroshi Kawamura, and Yuichi Matsuo. Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. J. Fluids Eng., 123(2):382–393, 2001.
[46] Xiaolei Shi and Chao-An Lin. Simulations of wall-bounded turbulent flows using general pressure equation. Flow, Turbulence and Combustion, 105(1):67–82, 2020.
[47] Xiaolei Shi, Tanmay Agrawal, Chao-An Lin, Feng-Nan Hwang, and Tzu-Hsuan Chiu. A parallel nonlinear multigrid solver for unsteady incompressible flow simulation on multi-GPU cluster. Journal of Computational Physics, 414:109447, 2020.
[48] Robert D Moser, John Kim, and Nagi N Mansour. Direct numerical simulation of turbulent channel flow up to re τ= 590. Physics of fluids, 11(4):943–945, 1999.
[49] C. B. Hwang and C. A. Lin. Improved Low-Reynolds-Number k-e Model Based on Direct Numerical Simulation Data. AIAA Journal, 36(1):38–43, 1998.
[50] Hsin-Wei Hsu, Jian-Bin Hsu, Wei Lo, and Chao-An Lin. Large eddy simulations of turbulent Couette–Poiseuille and Couette flows inside a square duct. Journal of Fluid Mechanics, 702:89–101, 2012.
[51] Wei-Jie Lin, Ming-Jiun Li, Chi-Wei Su, Xiao-Ying Huang, and Chao-An Lin. Direct numerical simulations of turbulent periodic-hill flows with mass-conserving lattice Boltzmann method. Physics of Fluids, 32(11), 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *