帳號:guest(18.118.142.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃超勇
作者(外文):Ng, Chow-Yong
論文名稱(中文):多機器人動態任務分配及路徑尋找設計與實踐
論文名稱(外文):Design and Implementation of Multi-Robot Dynamic Task Allocation and Pathfinding
指導教授(中文):陳榮順
指導教授(外文):Chen, Rongshun
口試委員(中文):白明憲
程登湖
口試委員(外文):Bai, Ming-Sian
Cheng, Teng-Hu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033404
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:74
中文關鍵詞:動態任務分配及路徑尋找多機器人任務分配多機器人路徑尋找蟻群演算法基於衝突式路徑尋找演算法
外文關鍵詞:DTAPFMRTAMAPFACOCBS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:360
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在任務順序及時間限制下,多機器人動態任務分配及路徑尋找問題是一個最佳化問題。本研究以貪婪演算法及蟻群演算法,做為任務分配的演算法,配合基於衝突式路徑尋找演算法為基礎,提出動態任務分配及路徑尋找的演算法架構。此架構可用於解決多機器人動態任務分配及路徑尋找問題。本研究提出一優先式的目標函數,將會優先完成任務的所得分數,再以最短所需的時間完成優先分配的任務。本研究所提出的演算法之架構,在預設的環境下執行模擬及實驗,並與單純的貪婪演算法作為比較,驗證所提方法的可行性。而結果表明此架構能優化既有的解決方法並且能夠處理動態環境的問題。
Under precedence and temporal constraints, dynamic task allocation and pathfinding for multi-robot system is to optimize an objective function by assigning tasks and plan paths for robots. In this thesis, a framework based on greedy search and ant colony optimization algorithm, a metaheuristic algorithm, is proposed to deal with the task allocation for multi-robot. Pathfinding is optimally solved through conflict-based search algorithm. With the priority-based objective function, the proposed framework first optimizes the utility of the tasks and then, the makespan of the overall system is optimized. Simulations and experiments are conducted and the results are compared with those from greedy-based algorithm to demonstrate the feasibility of the proposed framework.The results illustrate the improvement in the qualities of the solutions and the ability to handle dynamics in the environment.
摘要-----------------------------------i
Abstract-------------------------------ii
Acknowledgements-----------------------iii
List of Figures------------------------vii
List of Tables-------------------------xi
Nomenclature---------------------------x
Chapter 1: Introduction----------------1
1.1 Background and Motivation-------1
1.2 Literature Review---------------2
1.3 Outline-------------------------7
Chapter 2: DTAPF Problem Formulation---9
2.1 Dynamic MRTA/TOC----------------10
2.2 MAPF----------------------------15
2.3 Dynamic Re-­planning-------------16
Chapter 3: DTAPF framework Design------19
3.1 MRTA/TOC------------------------19
3.1.1 Greedy­-based Search-----------20
3.1.2 Ant Colony Optimization-------23
3.2 MAPF----------------------------27
3.3 Dynamic Re­-planning-------------31
Chapter 4: Robot System Architecture and Localization-----35
4.1 Robot System Architecture-------35
4.1.1 Differential Drive Robot------35
4.1.2 Trajectory Tracking-----------38
4.2 Vision Based Localization-------40
4.2.1 Landmark Based Localization---40
4.2.2 Camera Calibration------------42
4.2.3 Extended Kalman Filter--------45
Chapter 5: Simulation and Experimental Results-----47
5.1 Experiment Design---------------47
5.2 Simulation Results--------------49
5.2.1 Proposed Framework Results----49
5.3 Experimental Results------------60
5.3.1 Localization Results----------64
Chapter 6: Conclusions and Future Work-69
6.1 Conclusions---------------------69
6.2 Future Work---------------------70
References-----------------------------71
[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of cooperative, autonomous vehicles in warehouses,” AI Mag., vol. 29, pp. 9–20, 2008.
[2] P. M. Kornatowski, A. Bhaskaran, G. M. Heitz, S. Mintchev, and D. Floreano, “Last­centimeter personal drone delivery: Field deployment and user interaction,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3813– 3820, 2018.
[3] Cai Luo, A. P. Espinosa, D. Pranantha, and A. De Gloria, “Multi­robot search and rescue team,” in 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 296–301, 2011.
[4] M. Koes, I. Nourbakhsh, and K. Sycara, “Heterogeneous multirobot coordination with spatial and temporal constraints,” AAAI’05, p. 1292–1297, AAAI Press, 2005.
[5] H. Ma and S. Koenig, “Optimal target assignment and path finding for teams of agents,” CoRR, vol. abs/1612.05693, 2016.
[6] C. Henkel, J. Abbenseth, and M. Toussaint, “An optimal algorithm to solve the combined task allocation and path finding problem,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4140– 4146, 2019.
[7] C. Landry, R. Henrion, D. Hömberg, M. Skutella, and W. Welz, “Task assignment, sequencing and path­planning in robotic welding cells,” in 2013 18th International Conference on Methods Models in Automation Robotics (MMAR), pp. 252–257, 2013.
[8] K. Jose and D. K. Pratihar, “Task allocation and collision­free path planning of centralized multi­robots system for industrial plant inspection using heuristic methods,” Robotics and Autonomous Systems, vol. 80, pp. 34–42, 2016.
[9] E. A. Khamis A., Hussein A., “Multi­robot task allocation: A review of the state­of­the­art,” in Cooperative Robots and Sensor Networks 2015 (M.­d. D. J. Koubâa A., ed.), vol. 604, Cham: Springer, 2015.

[10] N. Seenu, M. KuppanChettyR., M. RamyaM., and M. N. Janardhanan, “Review on state­of­the­art dynamic task allocation strategies for multiple­ robot systems,” Ind. Robot, vol. 47, pp. 929–942, 2020.
[11] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in multi­robot systems,” The International Journal of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.
[12] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task allocation problems with temporal and ordering constraints,” Robotics and Autonomous Systems, vol. 90, pp. 55–70, 2017. Special Issue on New Research Frontiers for Intelligent Autonomous Systems.
[13] A. Mosteo and L. Montano, “Simulated annealing for multi­robot hierarchical task allocation with flexible constraints and objective functions,” in Workshop on Network Robot Systems: Toward Intelligent Robotic Systems Integrated with Environments, 01 2006.
[14] T. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. S. Nau, D. Wu, and F. Yaman, “SHOP2: an HTN planning system,” CoRR, vol. abs/1106.4869, 2011.
[15] M. Badreldin, A. Hussein, and A. Khamis, “A comparative study between optimization and market­based approaches to multi­robot task allocation,” Adv. in Artif. Intell., vol. 2013, Jan. 2013.
[16] H. Mitiche, D. Boughaci, and M. Gini, “Efficient heuristics for a time­extended multi­robot task allocation problem,” in 2015 First International Conference on New Technologies of Information and Communication (NTIC), pp. 1–6, 2015.
[17] A. Hussein and A. Khamis, “Market­based approach to multi­robot task allocation,” in 2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR), pp. 69–74, 2013.
[18] W. Wong and C. I. Ming, “A review on metaheuristic algorithms: Recent trends, benchmarking and applications,” in 2019 7th International Conference on Smart Computing Communications (ICSCC), pp. 1–5, 2019.
[19] J. Wang, Y. Gu, and X. Li, “Multi­robot task allocation based on ant colony algorithm,” Journal of Computers, vol. 7, 09 2012.
[20] X. Li, Z. Liu, and F. Tan, “Multi­robot task allocation based on cloud ant colony algorithm,” pp. 3–10, 10 2017.
[21] M. DORIGO, “Optimization, learning and natural algorithms,” PhD Thesis, Politecnico di Milano, 1992.

[22] T. Stützle and H. H. Hoos, “Max–min ant system,” Future Generation Computer Systems, vol. 16, no. 8, pp. 889–914, 2000.
[23] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Computational Intelligence Magazine, vol. 1, no. 4, pp. 28–39, 2006.
[24] A. Kulatunga, D. Liu, G. Dissanayake, and S. Siyambalapitiya, “Ant colony optimization based simultaneous task allocation and path planning of autonomous vehicles,” pp. 1 – 6, 07 2006.
[25] J. Yu and S. LaValle, “Structure and intractability of optimal multi­robot path planning on graphs,” in AAAI, 2013.
[26] G. Wagner and H. Choset, “M*: A complete multirobot path planning algorithm with performance bounds,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3260–3267, 2011.
[27] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. Sturtevant, R. C. Holte, and
J. Schaeffer, “Enhanced partial expansion a*,” J. Artif. Int. Res., vol. 50, p. 141– 187, May 2014.
[28] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict­based search for optimal multi­agent pathfinding,” Artificial Intelligence, vol. 219, pp. 40 – 66, 2015.
[29] E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin, and S. E. Shimony, “Icbs: The improved conflict­based search algorithm for multi­agent pathfinding,” in SOCS, 2015.
[30] S. Choudhury, J. K. Gupta, M. J. Kochenderfer, D. Sadigh, and J. Bohg, “Dynamic multi­robot task allocation under uncertainty and temporal constraints,” CoRR, vol. abs/2005.13109, 2020.
[31] F. Faruq, B. Lacerda, N. Hawes, and D. Parker, “Simultaneous task allocation and planning under uncertainty,” CoRR, vol. abs/1803.02906, 2018.
[32] B. Woosley and R. Dasgupta, “Multirobot task allocation with real­time path planning,” FLAIRS 2013 ­ Proceedings of the 26th International Florida Artificial Intelligence Research Society Conference, pp. 574–579, 01 2013.
[33] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker, J. Li,
D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski, and R. Barták, “Multi­agent pathfinding: Definitions, variants, and benchmarks,” CoRR, vol. abs/1906.08291, 2019.
[34] D. Atzmon, A. Felner, R. Stern, G. Wagner, R. Barták, and N.­F. Zhou, “k­ robust multi­agent path finding,” in SOCS, 2017.

[35] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and L. Jurišica, “Path planning with modified a star algorithm for a mobile robot,” Procedia Engineering, vol. 96, pp. 59–69, 2014. Modelling of Mechanical and Mechatronic Systems.
[36] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press, 2005.
[37] R. C. Coulter, “Implementation of the pure pursuit path tracking algorithm,” Tech. Rep. CMU­RI­TR­92­01, Carnegie Mellon University, Pittsburgh, PA, January 1992.
[38] F. J. Romero­Ramirez, R. Muñoz­Salinas, and R. Medina­Carnicer, “Speeded up detection of squared fiducial markers,” Image and Vision Computing, vol. 76, pp. 38–47, 2018.
[39] S. Garrido­Jurado, R. Muñoz­Salinas, F. Madrid­Cuevas, and R. Medina­ Carnicer, “Generation of fiducial marker dictionaries using mixed integer linear programming,” Pattern Recognition, vol. 51, pp. 481–491, 2016.
[40] J. H. Shim and Y. I. Cho, “A mobile robot localization via indoor fixed remote surveillance cameras,” Sensors, vol. 16, 2016.
[41] A. López­Cerón and J. M. Canas, “Accuracy analysis of marker­based 3 d visual localization,” in XXXVII Jornadas de Automatica Workshop, 2016.
[42] J. Zheng, S. Bi, B. Cao, and D. Yang, “Visual localization of inspection robot using extended kalman filter and aruco markers,” in 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 742–747, 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *