帳號:guest(3.137.200.239)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林威成
作者(外文):Lin, Wei-Cheng
論文名稱(中文):三元化合物作為新型高效能合金轉化型鉀離子電池負極
論文名稱(外文):Ternary compound as a new high-performance alloy-conversion type potassium ion battery anode
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing-Yu
口試委員(中文):呂明諺
曾院介
口試委員(外文):Lu, Ming-Yen
Tseng, Yuan-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:109032561
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:39
中文關鍵詞:鉀離子電池原位X光繞射三元化合物
外文關鍵詞:K ion batteryin-situ XRDternary compound
相關次數:
  • 推薦推薦:0
  • 點閱點閱:354
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於鉀含量豐富且價格低廉,因此鉀離子電池作為可替代鋰離子電池的候選人而越來越受到關注。在這次研究中,BiSbSe3/石墨複合材料藉由高能量球磨方法合成出來並首次用來當作鉀離子電池的負極材料。此材料在10 A g-1下具有116 mA h g-1的優異倍率能力,並在500 mA g-1下循環500次後仍保有250 mA h g-1的高電容量。除此之外,還藉由in-situ XRD以及ex-situ TEM的技術研究BiSbSe3在過程中的反應機制以及循環伏安法、GITT技術分析動力學。本次研究還報導了Cu3BiS3第一次被當作鉀離子電池負極材料。此材料較二元的CuS和Bi2S3擁有更好的循環穩定性。藉由ex-situ XRD、ex-situ HRXPS以及ex-situ TEM分析充放電過程中的反應機制,並藉由第一原理計算、SIMS技術研究Cu3BiS3擁有較好循環穩定性的原因。此項工作可能為新型高效能三元型鉀離子電池負極材料的開發開闢一條新的道路。
Due to the abundance and low price of potassium, potassium-ion batteries have received increasing attention as a candidate to replace lithium-ion batteries. In this study, BiSbSe3/graphite composites were synthesized by high-energy ball milling and used for the first time as anode materials for potassium-ion batteries. This material exhibits an excellent rate capability of 116 mA h g-1 at 10 A g-1 and retains a high capacitance of 250 mA h g-1 after 500 cycles at 500 mA g-1. In addition, the reaction mechanism of BiSbSe3 in the charging and discharging process was studied by in-situ XRD and ex-situ TEM, and the kinetics were analyzed by cyclic voltammetry and GITT techniques. This study also reported that Cu3BiS3 was used as an anode material for potassium-ion batteries for the first time. This material has better cycling stability than binary CuS and Bi2S3. The reaction mechanism during the charge-discharge process was analyzed by ex-situ XRD, ex-situ HRXPS and ex-situ TEM, and the reason why Cu3BiS3 had better cycling stability was investigated by first-principle calculations and SIMS technology. This work may open a new avenue for the development of new high-efficiency ternary potassium-ion battery anode materials.
中文摘要 I
Abstract II
List of figures IV
Chapter 1. Introduction 1
1.1 Prospects and challenges of potassium ion batteries 1
1.2 Anode materials for potassium ion batteries 1
1.3 Concept of Bi-Sb-Se ternary alloy conversion anode material 4
1.4 Concept of Cu-Bi-S ternary alloy conversion anode material 5
Chapter 2. Experimental section 7
2.1 Materials 7
2.2 Synthesis of BiSbSe3 7
2.3 Synthesis of BiSbSe3/G 7
2.4 Material characterization 7
2.5 Electrochemical measurement 8
Chapter 3. Result and discussion 9
3.1 Morphology 9
3.2 Structure characterization 10
3.3 Electrochemical performance 12
3.4 Mechanism 15
3.5 Kinetic 18
Chapter 4. Synthesis of copper-bismuth-sulfur ternary compound 21
4.1 Materials 21
4.2 Synthesis of Cu3BiS3 21
4.3 Synthesis of Cu3BiS3/G 21
4.4 Material characterization 21
4.5 Electrochemical measurement 22
Chapter 5. Result and discuss of Cu3BiS3 as a novel potassium ion battery anode 23
5.1 Morphology of Cu3BiS3 23
5.2 Structure characterization of Cu3BiS3 25
5.3 Electrochemical performance of Cu3BiS3 26
5.4 Mechanism of Cu3BiS3 28
5.5 Ex-situ TEM analysis of Cu3BiS3 31
5.6 Comparison of binary and ternary systems and DFT calculation 33
Conclusion 35
Reference 36
1. Wang, J.; Fan, L.; Liu, Z.; Chen, S.; Zhang, Q.; Wang, L.; Yang, H.; Yu, X.; Lu, B., In situ alloying strategy for exceptional potassium ion batteries. ACS nano 2019, 13 (3), 3703-3713.
2. Etogo, C. A.; Huang, H.; Hong, H.; Liu, G.; Zhang, L., Metal–organic-frameworks-engaged formation of Co0. 85Se@ C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Materials 2020, 24, 167-176.
3. Ge, J.; Fan, L.; Wang, J.; Zhang, Q.; Liu, Z.; Zhang, E.; Liu, Q.; Yu, X.; Lu, B., MoSe2/N‐doped carbon as anodes for potassium‐ion batteries. Advanced Energy Materials 2018, 8 (29), 1801477.
4. Rajagopalan, R.; Tang, Y.; Ji, X.; Jia, C.; Wang, H., Advancements and challenges in potassium ion batteries: a comprehensive review. Advanced Functional Materials 2020, 30 (12), 1909486.
5. Zhang, H.; Cheng, Y.; Zhang, Q.; Ye, W.; Yu, X.; Wang, M.-S., Fast and Durable Potassium Storage Enabled by Constructing Stress-Dispersed Co3Se4 Nanocrystallites Anchored on Graphene Sheets. ACS nano 2021.
6. Yi, Z.; Xu, J.; Xu, Z.; Zhang, M.; He, Y.; Bao, J.; Zhou, X., Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries. Journal of Energy Chemistry 2021, 60, 241-248.
7. Yi, Z.; Qian, Y.; Jiang, S.; Li, Y.; Lin, N.; Qian, Y., Self-wrinkled graphene as a mechanical buffer: A rational design to boost the K-ion storage performance of Sb2Se3 nanoparticles. Chemical Engineering Journal 2020, 379, 122352.
8. Xiong, P.; Wu, J.; Zhou, M.; Xu, Y., Bismuth–antimony alloy nanoparticle@ porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS nano 2019, 14 (1), 1018-1026.
9. Z. Tong, T. Kang, Y. Wu, F. Zhang, Y. Tang, C.-S. Lee, Novel metastable Bi: Co and Bi: Fe alloys nanodots@ carbon as anodes for high rate K-ion batteries. Nano Research, (2022) 1-7.
10. K. Zhang, W. Cai, Y. Liu, G. Hu, W. Hu, Y. Kong, X. Zhang, L. Wang, G. Li, Nitrogen-doped carbon embedded with Ag nanoparticles for bidirectionally-promoted polysulfide redox electrochemistry. Chem. Eng. J., 427 (2022) 130897.
11. Wang, S.; Xiao, Y.; Ren, D.; Su, L.; Qiu, Y.; Zhao, L.-D., Enhancing thermoelectric performance of BiSbSe3 through improving carrier mobility via percolating carrier transports. Journal of Alloys and Compounds 2020, 836, 155473.
12. Du, Y.; Yi, Z.; Chen, B.; Xu, J.; Zhang, Z.; Bao, J.; Zhou, X., Sn4P3 nanoparticles confined in multilayer graphene sheets as a high-performance anode material for potassium-ion batteries. Journal of Energy Chemistry 2022, 66, 413-421.
13. Chen, K.-T.; Yang, Y.-C.; Lyu, L.-M.; Lu, M.-Y.; Tuan, H.-Y., In situ formed robust submicron-sized nanocrystalline aggregates enable highly-reversible potassium ion storage. Nano Energy 2021, 106233.
14. Zhao, X.; Zhang, C.; Yang, G.; Wu, Y.; Fu, Q.; Zhao, H.; Lei, Y., Bismuth selenide nanosheets confined in thin carbon layers as anode materials for advanced potassium-ion batteries. Inorganic Chemistry Frontiers 2021, 8 (18), 4267-4275.
15. Sheng, B.; Wang, L.; Huang, H.; Yang, H.; Xu, R.; Wu, X.; Yu, Y., Boosting potassium storage by integration advantageous of defect engineering and spatial confinement: a case study of Sb2Se3. Small 2020, 16 (49), 2005272.
16. Chen, K.-T.; Tuan, H.-Y., Bi–Sb nanocrystals embedded in phosphorus as high-performance potassium ion battery electrodes. ACS nano 2020, 14 (9), 11648-11661.
17. Chen, K.-T.; Chong, S.; Yuan, L.; Yang, Y.-C.; Tuan, H.-Y., Conversion-alloying dual mechanism anode: Nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage. Energy Storage Materials 2021, 39, 239-249.
18. Ge, J.; Wang, B.; Wang, J.; Zhang, Q.; Lu, B., Nature of FeSe2/N‐C anode for high performance potassium ion hybrid capacitor. Advanced Energy Materials 2020, 10 (4), 1903277.
19. Hussain, N.; Li, M.; Tian, B.; Wang, H., Co3Se4 Quantum Dots as an Ultrastable Host Material for Potassium‐Ion Intercalation. Advanced Materials 2021, 2102164.
20. Yi, Y.; Sun, Z.; Li, C.; Tian, Z.; Lu, C.; Shao, Y.; Li, J.; Sun, J.; Liu, Z., Designing 3D biomorphic nitrogen‐doped MoSe2/graphene composites toward high‐performance potassium‐ion capacitors. Advanced Functional Materials 2020, 30 (4), 1903878.
21. Morales-Gallardo, M.; Pascoe-Sussoni, J. E.; Delesma, C.; Mathew, X.; Paraguay-Delgado, F.; Muñiz, J.; Mathews, N., Surfactant free solvothermal synthesis of Cu3BiS3 nanoparticles and the study of band alignments with n-type window layers for applications in solar cells: Experimental and theoretical approach. Journal of Alloys and Compounds 2021, 866, 158447.
22. B. Delley, From molecules to solids with the DMol 3 approach. J. Chem. Phys., 113 (2000) 7756-7764.
23. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 77 (1996) 3865.
24. Delley, B. An all‐electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys., 92, 508 (1990).
25. Chung, D. H. ; Buessem, W. R. The elastic anisotropy of crystals. J. Appl. Phys., 38, 2535 (1967).
26. S. Guo, H. Li, Y. Lu, Z. Liu, X. Hu, Lattice softening enables highly reversible sodium storage in anti-pulverization Bi–Sb alloy/carbon nanofibers. Energy Stor. Mater., 27 (2020) 270-278.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *