帳號:guest(3.144.118.103)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林信宏
作者(外文):Shin-Hong Lin
論文名稱(中文):鈷硫化物蝕刻碳奈米盒分散於負載單原子鐵催化劑之多壁奈米碳管應用於鋰硫電池硫陰極基底材料
論文名稱(外文):Cobalt Sulfide Embedded Carved Carbon Nanoboxes Dispersed in Iron Single-Atom decorated Multi-walled Carbon Nanotube Porous Structure as a Host Material for Lithium-Sulfur Batteries
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):蔡德豪
李建良
口試委員(外文):Tsai, De-Hao
Lee, Chien Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:109032546
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:109
中文關鍵詞:單原子鐵催化劑鋰硫電池鈷硫化物
外文關鍵詞:Iron Single-Atom CatalystsLithium-Sulfur BatteriesCobalt Sulfide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:81
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了提高現今商業電池的能量密度,鋰硫電池被視為一個非常有潛力的選擇。鋰硫電池擁有很高的理論重量能量密度(2500 Wh kg-1),其一般可達的重量能量密度也高達400~600 Wh kg-1,加上其對環境非常友善,且陰極材料成本低廉,因此被視為電化學儲能的明日之星。儘管鋰硫電池的前景看好,目前仍有些問題尚未解決。主要問題在於充放電過程中,會發生多硫化鋰穿梭效應,使電池中活性物質減少、電池壽命衰減、庫倫效率下降。
單原子金屬催化劑具有高活性。此種形式的催化劑是透過金屬原子高度分散於載體上來實現高活性,有助於吸附多硫化物,降低穿梭效應發生的機率以及催化多硫化鋰的轉換反應。本研究利用甲醯胺作為碳源以及氮源以熱溶劑法(solvothermal) 沉積於改質過的多壁奈米碳管表面,並將過渡金屬鹽類引入作為單原子金屬催化劑的前驅物。成功合成出含單原子鐵之氮化碳沉積於改質過多壁奈米碳管(SAFe-MWCNT)。同時製備含鈷硫化物的蝕刻碳奈米盒結構(S-Co@CCNB)。並將上述SAFe-MWCNT與S-Co@CCNB以特定比例混合,最後利用冷凍真空乾燥技術(freeze drying)使SAFe-MWCNT形成具高孔隙率的大孔固體泡沫(macroporous solid foam),且含鈷硫化物之蝕刻碳奈米盒被均勻分散於其中(Co@CCNB/SAFe-MWCNT)。吾人期望透過結合多壁奈米碳管出色的導電性、金屬硫化物對於鋰多硫化物極強的化學吸附性質以及單原子鐵金屬催化劑強大的催化多硫化鋰轉換反應的特性來改善鋰硫電池目前所遇到的技術難點。最後再利用滲流法(melt-diffusion method)的方式將Co@CCNB/SAFe-MWCNT與硫粉複合作為鋰硫電池的陰極材料(S-Co@CCNB/SAFe-MWCNT)。發現在充放電速率為0.1 C下可以產生1432 mAh g-1的首圈比電容值,且當充放電速率增加至2 C時還能保有538 mAh g-1的比電容值。在鋰硫電池長效測試方面,充放電電流速率1 C下充放電500個循環後仍能維持550 mAh g-1的比電容值,是初始放電容值的 78.6 %,平均每次循環的比電容量衰減率為0.042 %。長效測試表明S-Co@CCNB/SAFe-MWCNT具有優良的循環穩定性。吾人推測其可歸功於單原子鐵催化劑對多硫化鋰轉換反應的催化能力、多壁碳奈米管的良好導電性以及冷凍乾燥後形成的具高孔隙率的大孔固體泡沫,及含鈷硫化物之蝕刻碳奈米盒結構的孔隙率及對多硫化鋰的強化學吸附功能。
To further improve energy storage performances of today's commercial batteries, lithium-sulfur batteries emerge as a promising candidate. Lithium-sulfur batteries possess an ultrahigh theoretical energy density of 2500 Wh kg-1, with practically realized energy density as high as 400~600 Wh kg-1. In addition, its cathode material, sulfur, is eco-friendly and low cost. As stated above, it is regarded as one of the rising stars for electrochemical energy storage devices. Although the prospect of lithium-sulfur batteries is very promising, there are still technical issues to be resolved. The main problem is the shuttle effect of lithium polysulfides that occurs during the charging/discharging process. The shuttle effect decreases the sulfur amount at the cathode, lowers the Coulombic efficiency, and thus reduces the specific capacitance.
Single-atom metal catalysts possess high catalytic activities. This type of catalyst achieves high activities through highly dispersed metal atoms on substrates. It helps lithium-sulfur batteries to adsorb polysulfides, reduce the shuttle effect, and catalyze conversion reactions of polysulfides.
In this study, formamide was used as both the carbon source and nitrogen source to coat the modified multi-walled carbon nanotubes with a solvothermal method, and transition metal salts were introduced as precursors of single-atom metal catalysts. Iron single-atom loaded modified multi-walled carbon nanotubes (SAFe-MWCNT) were successfully synthesized with iron single-atoms stabilized on a carbon nitride layer. Furthermore, cobalt sulfide embedded carved carbon nanoboxes (S-Co@CCNB) were fabricated. The above-mentioned SAFe-MWCNT were mixed with S-Co@CCNB in a specific mass ratio, followed by freeze drying to afford a composite for accommodation of sulfur. The composite was composed of S-Co@CCNB well dispersed in the macroporous solid foam of SAFe-MWCNT of high porosities. We aim to combine the excellent electrical conductivity of MWCNTs, the excellent chemisorption property of metal sulfides toward lithium polysulfides, and the high catalytic efficiency of iron single-atoms for lithium polysulfide conversion reactions, to achieve a high performance host material for sulfur. Finally, S-Co@CCNB/SAFe-MWCNT was compounded with sulfur powder with a melt-diffusion method to serve as the cathode of the lithium-sulfur battery. A high initial charge specific capacity of 1432 mAh g-1 was achieved at 0.1 C, with a decent specific capacity of 538 mAh g-1 maintained at 2 C. For long-term stability tests, a specific capacity of 550 mAh g-1 was maintained after 500 cycles of charging/discharging at 1 C, which was 78.6 % of the initial discharge capacity. The average capacity decay rate per cycle was only 0.042 %, indicating the excellent cycling stability of the cathode. The success may be attributed to the high catalytic efficiency for conversion of lithium polysulfides of iron single-atoms, excellent conductivity of multi-walled carbon nanotubes, high degree dispersion of S-Co@CCNB in the macroporous solid foam of SAFe-MWCNT, and strong sorption capability of S-Co@CCNB toward lithium polysulfides.
目錄
摘要 i
致謝 v
目錄 vi
圖目錄 viii
表目錄 xiv
式目錄 xvi
第 1 章 緒論 1
1-1 前言 1
1-2 鋰硫電池 2
1-2-1 鈕扣電池結構簡介: 2
1-2-2 鋰硫電池的工作原理 4
1-2-3 電解液的選擇 6
1-3 鋰硫電池遇到的挑戰 6
1-4 單原子金屬觸媒 7
1-5 研究動機 9
第 2 章 文獻回顧 11
2-1 概述 11
2-2 有機金屬框架 18
2-3 單原子金屬催化劑應用在鋰硫電池 20
2-4 多壁奈米碳管以及冷凍乾燥技術應用在鋰硫電池 26
第 3 章 實驗方法與儀器 32
3-1 實驗藥品 32
3-2 實驗儀器 34
3-3 分析儀器 36
3-4 實驗步驟 39
3-4-1 含鈷硫化物的蝕刻碳奈米盒材料(S-Co@CCNB)製備 39
3-4-2 含單原子鐵之氮化碳沉積於改質過多壁奈米碳管(SAFe-MWCNT)材料製備 41
3-4-3 含鈷硫化物之蝕刻碳奈米盒分散於負載單原子鐵催化劑之多壁奈米碳管(S-Co@CCNB/SAFe-MWCNT)材料製備 42
3-4-4 多硫化鋰吸附實驗 42
3-4-5 鋰硫電池電極片製作與全電池組裝 43
3-4-6 電化學測試與分析 43
第 4 章 結果與討論 44
4-1 含鈷硫化物的蝕刻碳奈米盒材料(S-Co@CCNB)之材料鑑定與分析 44
4-2 含單原子鐵之氮化碳沉積於改質過多壁奈米碳管(SAFe-MWCNT)材料之材料鑑定與分析 55
4-3 含鈷硫化物的蝕刻碳奈米盒分散於負載單原子鐵催化劑之多壁奈米碳管材料(S-Co@CCNB/SAFe-MWCNT)之材料鑑定與分析 69
4-4 所合成之含鈷硫化物的蝕刻碳奈米盒分散於負載單原子鐵催化劑之多壁奈米碳管材料電化學性能測試與分析 76
4-5 本研究與鋰硫電池文獻之性能比較 96
第 5 章 結論 98
第 6 章 參考資料 99

第 6 章 參考資料
1. Qi-Yu, Wang, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, and Li Hong, Progress on the failure analysis of lithium battery. Acta Physica Sinica, 2018. 67(12): p. 128501 DOI: 10.7498/aps.67.20180757.
2. Cavallo, Carmen, Marco Agostini, James P. Genders, Muhammad E. Abdelhamid, and Aleksandar Matic, A free-standing reduced graphene oxide aerogel as supporting electrode in a fluorine-free Li2S8 catholyte Li-S battery. Journal of Power Sources, 2019. 416: p. 111-117 DOI: 10.1016/j.jpowsour.2019.01.081.
3. Cavallo, Carmen, Marco Agostini, James Genders, Muhammad Abdelhamid, and Aleksandar Matic, A free-standing reduced graphene oxide aerogel as supporting electrode in a fluorine-free Li2S8 catholyte Li-S battery. Journal of Power Sources, 2019. 416: p. 111 DOI: 10.1016/j.jpowsour.2019.01.081.
4. Guo, Junling and Jinping Liu, Binder-free electrode architecture design for lithium-sulfur batteries: A review. Nanoscale Advances, 2019. 1 DOI: 10.1039/C9NA00040B.
5. Zhang, X., J. S. Meng, X. P. Wang, Z. T. Xiao, P. J. Wu, and L. Q. Mai, Comprehensive Insights into Electrolytes and Solid Electrolyte Interfaces in Potassium-Ion Batteries. Energy Storage Materials, 2021. 38: p. 30-49 DOI: 10.1016/j.ensm.2021.02.036.
6. Wu, Jiabin, Liukang Xiong, Bote Zhao, Meilin Liu, and Liang Huang, Densely Populated Single Atom Catalysts. Small Methods, 2020. 4(2): p. 1900540 DOI: 10.1002/smtd.201900540.
7. Yang, Xiao-Feng, Aiqin Wang, Botao Qiao, Jun Li, Jingyue Liu, and Tao Zhang, Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 2013. 46(8): p. 1740-1748 DOI: 10.1021/ar300361m.
8. Cleaver, B. and S. M. Upton, Properties of Fused Polysulfides .8. Sulfur Activity and Polysulfide Chain-Length Distribution in Molten Lithium and Sodium Polysulfides and Their Mixtures. Electrochimica Acta, 1991. 36(3-4): p. 679-687 DOI: 10.1016/0013-4686(91)85158-4.
9. Xu, X. D., Y. L. Zhang, H. Y. Sun, J. W. Zhou, F. Yang, H. Li, H. Chen, Y. C. Chen, Z. Liu, Z. P. Qiu, D. Wang, L. P. Ma, J. W. Wang, Q. G. Zeng, and Z. Q. Peng, Progress and Perspective: MXene and MXene-Based Nanomaterials for High-Performance Energy Storage Devices. Advanced Electronic Materials, 2021. 7(7) DOI: 10.1002/aelm.202000967.
10. Fan, Ye, Zhi Yang, Wuxing Hua, Dan Liu, Tao Tao, Md Mokhlesur Rahman, Weiwei Lei, Shaoming Huang, and Ying Chen, Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long‐Life Lithium–Sulfur Batteries. Advanced Energy Materials, 2017. 7(13): p. 1602380.
11. Fan, Ye, Zhi Yang, Wuxing Hua, Dan Liu, Tao Tao, Md Mokhlesur Rahman, Weiwei Lei, Shaoming Huang, and Ying Chen, Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long-Life Lithium–Sulfur Batteries. Advanced Energy Materials, 2017. 7(13): p. 1602380 DOI: 10.1002/aenm.201602380.
12. Ai, Wei, Weiwei Zhou, Zhuzhu Du, Yu Chen, Zhipeng Sun, Chao Wu, Chenji Zou, Changming Li, Wei Huang, and Ting Yu, Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li-S batteries. Energy Storage Materials, 2017. 6: p. 112-118 DOI: 10.1016/j.ensm.2016.10.008.
13. Chen, Tao, Zewen Zhang, Baorui Cheng, Renpeng Chen, Yi Hu, Lianbo Ma, Guoyin Zhu, Jie Liu, and Zhong Jin, Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co3S4 Nanoboxes for High-Rate and Heat-Resistant Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2017. 139(36): p. 12710-12715 DOI: 10.1021/jacs.7b06973.
14. Cai, Junjie, Chun Wu, Ying Zhu, Kaili Zhang, and Pei Kang Shen, Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries. Journal of Power Sources, 2017. 341: p. 165-174 DOI: 10.1016/j.jpowsour.2016.12.008.
15. Zhou, Weidong, Xingcheng Xiao, Mei Cai, and Li Yang, Polydopamine-Coated, Nitrogen-Doped, Hollow Carbon–Sulfur Double-Layered Core–Shell Structure for Improving Lithium–Sulfur Batteries. Nano Letters, 2014. 14(9): p. 5250-5256 DOI: 10.1021/nl502238b.
16. Liu, Jinghai, Wanfei Li, Limei Duan, Xin Li, Lei Ji, Zhibin Geng, Keke Huang, Luhua Lu, Lisha Zhou, Zongrui Liu, Wei Chen, Liwei Liu, Shouhua Feng, and Yuegang Zhang, A Graphene-like Oxygenated Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur Batteries. Nano Letters, 2015. 15(8): p. 5137-5142 DOI: 10.1021/acs.nanolett.5b01919.
17. Liao, Kaiming, Peng Mao, Na Li, Min Han, Jin Yi, Ping He, Yang Sun, and Haoshen Zhou, Stabilization of polysulfides via lithium bonds for Li–S batteries. Journal of Materials Chemistry A, 2016. 4(15): p. 5406-5409 DOI: 10.1039/C6TA00054A.
18. Zhang, Juan, Jin-Yi Li, Wen-Peng Wang, Xing-Hao Zhang, Xing-Hua Tan, Wei-Guo Chu, and Yu-Guo Guo, Microemulsion Assisted Assembly of 3D Porous S/Graphene@g-C3N4 Hybrid Sponge as Free-Standing Cathodes for High Energy Density Li–S Batteries. Advanced Energy Materials, 2018. 8(14): p. 1702839 DOI: 10.1002/aenm.201702839.
19. Song, M. S., S. C. Han, H. S. Kim, J. H. Kim, K. T. Kim, Y. M. Kang, H. J. Ahn, S. X. Dou, and J. Y. Lee, Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. Journal of the Electrochemical Society, 2004. 151(6): p. A791-A795 DOI: 10.1149/1.1710895.
20. Zhou, Jie, Ning Lin, Wen long Cai, Cong Guo, Kailong Zhang, Jianbin Zhou, Yongchun Zhu, and Yitai Qian, Synthesis of S/CoS2 Nanoparticles-Embedded N-doped Carbon Polyhedrons from Polyhedrons ZIF-67 and their Properties in Lithium-Sulfur Batteries. Electrochimica Acta, 2016. 218: p. 243-251 DOI: 10.1016/j.electacta.2016.09.130.
21. Ma, Zhaoling, Zhen Li, Kui Hu, Dongdong Liu, Jia Huo, and Shuangyin Wang, The enhancement of polysulfide absorbsion in LiS batteries by hierarchically porous CoS2/carbon paper interlayer. Journal of Power Sources, 2016. 325: p. 71-78 DOI: 10.1016/j.jpowsour.2016.04.139.
22. Zhuang, Zechao, Qi Kang, Dingsheng Wang, and Yadong Li, Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Research, 2020. 13(7): p. 1856-1866 DOI: 10.1007/s12274-020-2827-4.
23. Rana, Masud, Bin Luo, Mohammad Rejaul Kaiser, Ian Gentle, and Ruth Knibbe, The role of functional materials to produce high areal capacity lithium sulfur battery. Journal of Energy Chemistry, 2020. 42: p. 195-209 DOI: 10.1016/j.jechem.2019.06.015.
24. Zhou, J., R. Li, X. Fan, Y. Chen, R. Han, W. Li, J. Zheng, B. Wang, and X. Li, Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries. Energy and Environmental Science, 2014. 7(8): p. 2715-2724 DOI: 10.1039/c4ee01382d.
25. Chen, Xiaoxia, Xuyang Ding, Haliya Muheiyati, Zhenyu Feng, Liqiang Xu, Weini Ge, and Yitai Qian, Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium-sulfur batteries. Nano Research, 2019. 12(5): p. 1115-1120 DOI: 10.1007/s12274-019-2358-z.
26. Wu, Yen-Ju, Cheng-Hao Chen, Shin-Hong Lin, Chun-Lung Huang, Yong-Xian Yeh, Jia-Yu Tan, Jing-Ting Su, Cheng-Ting Hsieh, and Shih-Yuan Lu, Triple functionalization of carved N-doped carbon nanoboxes with synergistic trimetallic sulphide for high performance lithium–sulphur batteries. Journal of Materials Chemistry A, 2021. 9(14): p. 9028-9037 DOI: 10.1039/D1TA00077B.
27. Wang, Jian, Lujie Jia, Jun Zhong, Qingbo Xiao, Chong Wang, Ketao Zang, Haitao Liu, Hechuang Zheng, Jun Luo, Jin Yang, Haiyan Fan, Wenhui Duan, Yang Wu, Hongzhen Lin, and Yuegang Zhang, Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Materials, 2019. 18: p. 246-252 DOI: 10.1016/j.ensm.2018.09.006.
28. Du, Zhenzhen, Xingjia Chen, Wei Hu, Chenghao Chuang, Shuai Xie, Ajuan Hu, Wensheng Yan, Xianghua Kong, Xiaojun Wu, Hengxing Ji, and Li-Jun Wan, Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2019. 141(9): p. 3977-3985 DOI: 10.1021/jacs.8b12973.
29. Wu, Jialing, Junmei Chen, Yang Huang, Kun Feng, Jun Deng, Wei Huang, Yunling Wu, Jun Zhong, and Yanguang Li, Cobalt atoms dispersed on hierarchical carbon nitride support as the cathode electrocatalyst for high-performance lithium-polysulfide batteries. Science Bulletin, 2019. 64(24): p. 1875-1880 DOI: 10.1016/j.scib.2019.08.016.
30. Li, Yijuan, Guilin Chen, Jirong Mou, Yanzhen Liu, Shoufeng Xue, Ting Tan, Wentao Zhong, Qiang Deng, Tao Li, Junhua Hu, Chenghao Yang, Kevin Huang, and Meilin Liu, Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries. Energy Storage Materials, 2020. 28: p. 196-204 DOI: 10.1016/j.ensm.2020.03.008.
31. Wang, Jian, Lujie Jia, Shaorong Duan, Haitao Liu, Qingbo Xiao, Tie Li, Haiyan Fan, Kun Feng, Jin Yang, Qi Wang, Meinan Liu, Jun Zhong, Wenhui Duan, Hongzhen Lin, and Yuegang Zhang, Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode. Energy Storage Materials, 2020. 28: p. 375-382 DOI: 10.1016/j.ensm.2020.03.023.
32. Wang, Cunguo, Hewei Song, Congcong Yu, Zaka Ullah, Zhixing Guan, Rongrong Chu, Yingfei Zhang, Liyi Zhao, Qi Li, and Liwei Liu, Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. Journal of Materials Chemistry A, 2020. 8(6): p. 3421-3430 DOI: 10.1039/C9TA11680J.
33. Chen, Cheng-Hao, Shin-Hong Lin, Yen-Ju Wu, Jing-Ting Su, Chih-Chieh Cheng, Po-Yin Cheng, Yu-Chieh Ting, and Shih-Yuan Lu, MOF-derived cobalt Disulfide/Nitrogen-doped carbon composite polyhedrons linked with Multi-walled carbon nanotubes as sulfur hosts for Lithium-Sulfur batteries. Chemical Engineering Journal, 2022. 431: p. 133924 DOI: 10.1016/j.cej.2021.133924.
34. He, Jiarui, Yuanfu Chen, Pingjian Li, Fei Fu, Zegao Wang, and Wanli Zhang, Three-dimensional CNT/graphene–sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015. 3(36): p. 18605-18610 DOI: 10.1039/C5TA04445F.
35. Feng, Yi, Xin-Yao Yu, and Ungyu Paik, Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation. Chemical Communications, 2016. 52(37): p. 6269-6272 DOI: 10.1039/C6CC02093C.
36. Yu, Tianlang, Electrochemical Performances and Air Stability of Fe-doped CoS2 Cathode Materials for Thermal Batteries. International Journal of Electrochemical Science, 2018: p. 7590-7597 DOI: 10.20964/2018.08.25.
37. Tang, Jianhua, Jianfeng Shen, Na Li, and Mingxin Ye, A free template strategy for the synthesis of CoS2-reduced graphene oxide nanocomposite with enhanced electrode performance for supercapacitors. Ceramics International, 2014. 40(10, Part A): p. 15411-15419 DOI: 10.1016/j.ceramint.2014.06.033.
38. Xie, Song, Yafeng Deng, Jun Mei, Zhaotang Yang, Woon-Ming Lau, and Hao Liu, Facile synthesis of CoS2/CNTs composite and its exploitation in thermal battery fabrication. Composites Part B: Engineering, 2016. 93: p. 203-209 DOI: 10.1016/j.compositesb.2016.03.038.
39. Ma, Dui, Bo Hu, Wenda Wu, Xi Liu, Jiantao Zai, Chen Shu, Tsegaye Tadesse Tsega, Liwei Chen, Xuefeng Qian, and T. Leo Liu, Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nature Communications, 2019. 10(1): p. 3367 DOI: 10.1038/s41467-019-11176-y.
40. Kornienko, Nikolay, Joaquin Resasco, Nigel Becknell, Chang-Ming Jiang, Yi-Sheng Liu, Kaiqi Nie, Xuhui Sun, Jinghua Guo, Stephen R. Leone, and Peidong Yang, Operando Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst. Journal of the American Chemical Society, 2015. 137(23): p. 7448-7455 DOI: 10.1021/jacs.5b03545.
41. Ahn, In-Kyoung, Wonhyo Joo, Ji-Hoon Lee, Hyoung Gyun Kim, So-Yeon Lee, Youngran Jung, Ji-Yong Kim, Gi-Baek Lee, Miyoung Kim, and Young-Chang Joo, Metal-organic Framework-driven Porous Cobalt Disulfide Nanoparticles Fabricated by Gaseous Sulfurization as Bifunctional Electrocatalysts for Overall Water Splitting. Scientific Reports, 2019. 9(1): p. 19539 DOI: 10.1038/s41598-019-56084-9.
42. Shi, Bingfang, Yubin Su, Yan Duan, Shengyu Chen, and Weiyuan Zuo, A nanocomposite prepared from copper(II) and nitrogen-doped graphene quantum dots with peroxidase mimicking properties for chemiluminescent determination of uric acid. Microchimica Acta, 2019. 186(7): p. 397 DOI: 10.1007/s00604-019-3491-9.
43. Zheng, Guoyuan, Caihong Wu, Jilin Wang, Shuyi Mo, Zhengguang Zou, Bing Zhou, and Fei Long, Space-Confined Effect One-Pot Synthesis of γ-AlO(OH)/MgAl-LDH Heterostructures with Excellent Adsorption Performance. Nanoscale Research Letters, 2019. 14(1): p. 281 DOI: 10.1186/s11671-019-3112-x.
44. Xu, Yingying, Zhiyuan Liu, Di Chen, Yuanjun Song, and Rongming Wang, Synthesis and Electrochemical Properties of Porous α-Co(OH)2 and Co3O4 Microspheres. Progress in Natural Science: Materials International, 2017. 27(2): p. 197-202 DOI: 10.1016/j.pnsc.2017.03.001.
45. Srinivasan, Parthasarathy, Arockia Jayalatha, Dr Ganesh Kumar Mani, Jayanth Karanam, Kazuyoshi Tsuchiya, John Bosco, and John Bosco Balaguru Rayappan, Development of an acetone sensor using nanostructured Co3O4 thin films for exhaled breath analysis †. RSC Advances, 2019. 9: p. 30226-30239 DOI: 10.1039/c9ra04230j.
46. Zhang, Guoxin, Yin Jia, Cong Zhang, Xuya Xiong, Kai Sun, Ruida Chen, Wenxing Chen, Yun Kuang, Lirong Zheng, Haolin Tang, Wen Liu, Junfeng Liu, Xiaoming Sun, Wen-Feng Lin, and Hongjie Dai, A general route via formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy & Environmental Science, 2019. 12(4): p. 1317-1325 DOI: 10.1039/C9EE00162J.
47. Nie, Peng, Chunying Min, Hao-Jie Song, Xihui Chen, Zhaozhu Zhang, and Kaili Zhao, Preparation and Tribological Properties of Polyimide/Carboxyl-Functionalized Multi-walled Carbon Nanotube Nanocomposite Films Under Seawater Lubrication. Tribology Letters, 2015. 58(1): p. 7 DOI: 10.1007/s11249-015-0476-7.
48. Cai, Jun, Jia Liu, Zi Gao, Alexandra Navrotsky, and Steven L. Suib, Synthesis and Anion Exchange of Tunnel Structure Akaganeite. Chemistry of Materials, 2001. 13(12): p. 4595-4602 DOI: 10.1021/cm010310w.
49. Fina, Federica, Samantha K. Callear, George M. Carins, and John T. S. Irvine, Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction. Chemistry of Materials, 2015. 27(7): p. 2612-2618 DOI: 10.1021/acs.chemmater.5b00411.
50. Cheng, Chih-Chieh, Yong-Xian Yeh, Yu-Chieh Ting, Shin-Hong Lin, Kotaro Sasaki, YongMan Choi, and Shih-Yuan Lu, Modulation of the coordination environment enhances the electrocatalytic efficiency of Mo single atoms toward water splitting. Journal of Materials Chemistry A, 2022. 10(16): p. 8784-8797 DOI: 10.1039/D2TA01750D.
51. Mi, Rui, Hao Liu, Hao Wang, Ka-Wai Wong, Jun Mei, Yungui Chen, Woon-Ming Lau, and Hui Yan, Effects of nitrogen-doped carbon nanotubes on the discharge performance of Li-air batteries. Carbon, 2014. 67: p. 744-752 DOI: 10.1016/j.carbon.2013.10.066.
52. Larrude, D. G., Paola Ayala, M. Costa, and Fernando Freire, Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles. Journal of Nanomaterials, 2012. 2012 DOI: 10.1155/2012/695453.
53. Zhu, Kaijian, Wenjun Luo, Zhu Guoxiang, Jun Wang, Zhigang Zou, and Wei Huang, Interface-Engineered Ni(OH)2/β-like FeOOH Electrocatalysts for Highly Efficient and Stable Oxygen Evolution Reaction. Chemistry - An Asian Journal, 2017. 12 DOI: 10.1002/asia.201700964.
54. Tang, Wenzhu, Gaowei Zhang, and Yejun Qiu, FeOOH/Ni heterojunction nanoarrays on carbon cloth as a robust catalyst for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2020. 45(53): p. 28566-28575 DOI: 10.1016/j.ijhydene.2020.07.022.
55. Sun, Minghong, Qicheng Zhang, Qiming Chen, Xiaohan Hou, Wenchao Peng, Yang Li, Fengbao Zhang, Qing Xia, and Xiaobin Fan, Coupling LaNiO3 Nanorods with FeOOH Nanosheets for Oxygen Evolution Reaction. Catalysts, 2022. 12(6) DOI: 10.3390/catal12060594.
56. Newville, Matthew, EXAFS analysis using FEFF and FEFFIT. Journal of Synchrotron Radiation, 2001. 8(2): p. 96-100 DOI: doi:10.1107/S0909049500016290.
57. Yamashita, Toru and Peter Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008. 254(8): p. 2441-2449 DOI: 10.1016/j.apsusc.2007.09.063.
58. Jiao, Long, Gang Wan, Rui Zhang, Hua Zhou, Shu-Hong Yu, and Hai-Long Jiang, From Metal–Organic Frameworks to Single-Atom Fe Implanted N-doped Porous Carbons: Efficient Oxygen Reduction in Both Alkaline and Acidic Media. Angewandte Chemie International Edition, 2018. 57(28): p. 8525-8529 DOI: 10.1002/anie.201803262.
59. Shangguan, Huihui, Wei Huang, Christian Engelbrekt, Xiaowen Zheng, Fei Shen, Xinxin Xiao, Lijie Ci, Pengchao Si, and Jingdong Zhang, Well-defined cobalt sulfide nanoparticles locked in 3D hollow nitrogen-doped carbon shells for superior lithium and sodium storage. Energy Storage Materials, 2019. 18: p. 114-124 DOI: 10.1016/j.ensm.2019.01.012.
60. Tahir, Muhammad, Muhammad Tahir, Nasir Mahmood, Jinghan Zhu, Asif Mahmood, Faheem K. Butt, Syed Rizwan, Imran Aslam, M. Tanveer, Faryal Idrees, Imran Shakir, Chuanbao Cao, and Yanglong Hou One Dimensional Graphitic Carbon Nitrides as Effective Metal-Free Oxygen Reduction Catalysts. Scientific reports, 2015. 5, 12389 DOI: 10.1038/srep12389.
61. Zhang, Shengbo, Meng Jin, Tongfei Shi, Miaomiao Han, Qiao Sun, Yue Lin, Zhenhua Ding, Li Rong Zheng, Guozhong Wang, Yunxia Zhang, Haimin Zhang, and Huijun Zhao, Electrocatalytically Active Fe-(O-C2)4 Single-Atom Sites for Efficient Reduction of Nitrogen to Ammonia. Angewandte Chemie International Edition, 2020. 59(32): p. 13423-13429 DOI: 10.1002/anie.202005930.
62. Tian, Zhipeng, Chenguang Wang, Jun Yue, Xinghua Zhang, and Longlong Ma, Effect of a potassium promoter on the Fischer–Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon. Catalysis Science & Technology, 2019. 9(11): p. 2728-2741 DOI: 10.1039/C9CY00403C.
63. Greczynski, G. and L. Hultman, Self-consistent modelling of X-ray photoelectron spectra from air-exposed polycrystalline TiN thin films. Applied Surface Science, 2016. 387: p. 294-300 DOI: 10.1016/j.apsusc.2016.06.012.
64. Dong, Zhipeng, Qiyan Wang, Ming Huo, Nanxia Zhang, Bingxia Li, Hongmei Li, Yisong Xu, Meng Chen, Hao Hong, and Yue Wang, Mannose-Modified Multi-Walled Carbon Nanotubes as a Delivery Nanovector Optimizing the Antigen Presentation of Dendritic Cells. ChemistryOpen, 2019. 8(7): p. 915-921 DOI: 10.1002/open.201900126.
65. Zhang, Cong, Ling Qu, and Wenjie Yuan, Effects of Si/C Ratio on the Phase Composition of Si-C-N Powders Synthesized by Carbonitriding. Materials, 2020. 13(2) DOI: 10.3390/ma13020346.
66. Wei, Jing, Dandan Zhou, Zhenkun Sun, Yonghui Deng, Yongyao Xia, and Dongyuan Zhao, A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. Advanced Functional Materials, 2013. 23(18): p. 2322-2328 DOI: 10.1002/adfm.201202764.
67. Li, Le, Jun Zhou, Chao Zhang, and Tianxi Liu, Confined sulfidation strategy toward cobalt sulfide@nitrogen, sulfur co-doped carbon core-shell nanocomposites for lithium-ion battery anodes. Composites Communications, 2019. 15: p. 162-167 DOI: 10.1016/j.coco.2019.07.010.
68. Huang, Xia, Zhiliang Wang, Ruth Knibbe, Bin Luo, Syed Abdul Ahad, Dan Sun, and Lianzhou Wang, Cyclic Voltammetry in Lithium–Sulfur Batteries—Challenges and Opportunities. Energy Technology, 2019. 7(8): p. 1801001 DOI: 10.1002/ente.201801001.
69. Chen, Liang, Junpeng Wang, Yuanyuan Ren, and Wenjie Zeng, N-Doped graphene embellished with Co9S8 enable advanced sulfur cathode for high-performance lithium-sulfur batteries. International Journal of Energy Research, 2020. 44(6): p. 4961-4968 DOI: 10.1002/er.5236.
70. Yang, Changsheng, Xinlu Wang, Guixia Liu, Wensheng Yu, Xiangting Dong, and Jinxian Wang, One-step hydrothermal synthesis of Ni-Co sulfide on Ni foam as a binder-free electrode for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2020. 565: p. 378-387 DOI: 10.1016/j.jcis.2019.12.112.
71. Wang, Shuhui, Jinze Guo, Ruisong Guo, Xiaohong Sun, Fuyun Li, Tingting Li, Xinqi Zhao, and Yani Luo, CoS2 Nanospheres Anchored on 3D N-Doped Carbon Skeleton Derived from Bacterial Cellulose for Lithium-Sulfur Batteries. Journal of The Electrochemical Society, 2021. 168(2): p. 020512 DOI: 10.1149/1945-7111/abdeee.
72. Gao, Cong, Chuanzhen Fang, Haimin Zhao, Jiayi Yang, Zhida Gu, Wei Sun, Weina Zhang, Sheng Li, Li-Chun Xu, Xiuyan Li, and Fengwei Huo, Rational design of multi-functional CoS@rGO composite for performance enhanced Li-S cathode. Journal of Power Sources, 2019. 421: p. 132-138 DOI: 10.1016/j.jpowsour.2019.03.015.
73. Zhang, Haikuo, Jinyun Liu, Xirong Lin, Yan Zhong, Jiahao Ren, Zhilong Wang, Tianli Han, and Jinjin Li, A metal organic foam-derived zinc cobalt sulfide with improved binding energies towards polysulfides for lithium–sulfur batteries. Ceramics International, 2020. 46(9): p. 14056-14063 DOI: 10.1016/j.ceramint.2020.02.205.
74. Lao, Mengmeng, Guoqiang Zhao, Xin Li, Yaping Chen, Shi Xue Dou, and Wenping Sun, Homogeneous Sulfur–Cobalt Sulfide Nanocomposites as Lithium–Sulfur Battery Cathodes with Enhanced Reaction Kinetics. ACS Applied Energy Materials, 2018. 1(1): p. 167-172 DOI: 10.1021/acsaem.7b00049.
75. Wu, Ping, Hai-Yan Hu, Ning Xie, Chen Wang, Fan Wu, Ming Pan, Hua-Fei Li, Xiao-Di Wang, Zheling Zeng, Shuguang Deng, and Gui-Ping Dai, A N-doped graphene–cobalt nickel sulfide aerogel as a sulfur host for lithium–sulfur batteries. RSC Advances, 2019. 9(55): p. 32247-32257 DOI: 10.1039/C9RA05202J.
76. Liao, Xiaobin, Zhaohuai Li, Qiu He, Lixue Xia, Yan Li, Shaohua Zhu, Manman Wang, Huan Wang, Xu Xu, Liqiang Mai, and Yan Zhao, Three-Dimensional Porous Nitrogen-Doped Carbon Nanosheet with Embedded NixCo3–xS4 Nanocrystals for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020. 12(8): p. 9181-9189 DOI: 10.1021/acsami.9b19506.
77. You, Yu, Yangwei Ye, Mengli Wei, WeiJun Sun, Qiong Tang, Jing Zhang, Xing Chen, Heqin Li, and Jun Xu, Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2019. 355: p. 671-678 DOI: 10.1016/j.cej.2018.08.176.
78. Xu, Mingsheng, Peng Dong, Ting Li, Haiming Hua, Yongtai Li, Xue Li, Yiyong Zhang, Yingjie Zhang, and Jinbao Zhao, Promoting kinetics of polysulfides redox reactions by the multifunctional CoS/C/CNT microspheres for high-performance lithium-sulfur batteries. Applied Surface Science, 2020. 504: p. 144463 DOI: 10.1016/j.apsusc.2019.144463.
79. Tong, Wei, Yudai Huang, Wei Jia, Xingchao Wang, Yong Guo, Zhipeng Sun, Dianzeng Jia, and Jun Zong, Leaf-like interconnected network structure of MWCNT/Co9S8/S for lithium-sulfur batteries. Journal of Alloys and Compounds, 2018. 731: p. 964-970 DOI: 10.1016/j.jallcom.2017.10.115.
80. Li, Yuanjian, Jiabin Wu, Bao Zhang, Wenyu Wang, Guoqun Zhang, Zhi Wei Seh, Nian Zhang, Jie Sun, Liang Huang, Jianjun Jiang, Jun Zhou, and Yongming Sun, Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Materials, 2020. 30: p. 250-259 DOI: 10.1016/j.ensm.2020.05.022.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *