|
[1] “World-Energy-Scenarios_Composing-energy-futures-to-2050_Executive-summary,” 2013. [2] A.-E. Becquerel, “Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques,” CR Acad. Sci, vol. 9, no. 145, pp. 1, 1839. [3] W. G. Adams, and R. E. Day, “V. The action of light on selenium,” Proceedings of the Royal Society of London, vol. 25, no. 171-178, pp. 113-117, 1877. [4] C. E. Fritts, “On a new form of selenium cell, and some electrical discoveries made by its use,” American Journal of Science, vol. 3, no. 156, pp. 465-472, 1883. [5] https://www.nrel.gov/pv/cell-efficiency.html. [6] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009. [7] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011. [8] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J. E. Moser, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific reports, vol. 2, no. 1, pp. 1-7, 2012. [9] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395-398, 2013. [10] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nature materials, vol. 13, no. 9, pp. 897-903, 2014. [11] J.-X. Song, X.-X. Yin, Z.-F. Li, and Y.-W. Li, “Low-temperature-processed metal oxide electron transport layers for efficient planar perovskite solar cells,” Rare Metals, vol. 40, no. 10, pp. 2730-2746, 2021. [12] J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, “Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency,” Energy & Environmental Science, vol. 8, no. 5, pp. 1602-1608, 2015. [13] D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, and D. Kim, “Self-formed grain boundary healing layer for highly efficient CH 3 NH 3 PbI 3 perovskite solar cells,” Nature Energy, vol. 1, no. 7, pp. 1-8, 2016. [14] S. Shin, S. Lee, and S. I. Seok, “Exploring wide bandgap metal oxides for perovskite solar cells,” APL Materials, vol. 7, no. 2, pp. 022401, 2019. [15] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, pp. 316-319, 2013. [16] A. Ummadisingu, and M. Grätzel, “Revealing the detailed path of sequential deposition for metal halide perovskite formation,” Science advances, vol. 4, no. 2, pp. e1701402, 2018. [17] D. H. Cao, C. C. Stoumpos, C. D. Malliakas, M. J. Katz, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?,” Apl Materials, vol. 2, no. 9, pp. 091101, 2014. [18] A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi, S. Hayase, and Y. Murata, “Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers,” Chemistry Letters, vol. 43, no. 5, pp. 711-713, 2014. [19] T.-Y. Hsieh, T.-C. Wei, K.-L. Wu, M. Ikegami, and T. Miyasaka, “Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor,” Chemical Communications, vol. 51, no. 68, pp. 13294-13297, 2015. [20] Y. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” Journal of the American Chemical Society, vol. 137, no. 17, pp. 5810-5818, 2015. [21] T.-Y. Hsieh, C.-K. Huang, T.-S. Su, C.-Y. Hong, and T.-C. Wei, “Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance,” ACS Applied Materials & Interfaces, vol. 9, no. 10, pp. 8623-8633, 2017/03/15, 2017. [22] T.-Y. Hsieh, T.-S. Su, M. Ikegami, T.-C. Wei, and T. Miyasaka, “Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition,” Materials Today Energy, vol. 14, pp. 100125, 2019. [23] P. Zhai, T.-S. Su, T.-Y. Hsieh, W.-Y. Wang, L. Ren, J. Guo, and T.-C. Wei, “Toward clean production of plastic perovskite solar cell: Composition-tailored perovskite absorber made from aqueous lead nitrate precursor,” Nano energy, vol. 65, pp. 104036, 2019. [24] 鄭宇婷, “Compositional Engineering on Perovskite Solar Cells Fabricated Using Lead-Nitrate Aqueous Precursors,” 2020. [25] K. Sveinbjörnsson, N. K. K. Thein, Z. Saki, S. Svanström, W. Yang, U. B. Cappel, H. Rensmo, G. Boschloo, K. Aitola, and E. M. Johansson, “Preparation of mixed-ion and inorganic perovskite films using water and isopropanol as solvents for solar cell applications,” Sustainable Energy & Fuels, vol. 2, no. 3, pp. 606-615, 2018. [26] 謝順來, “Applying Low-toxic 3-step Method for Fabricating Aqueous Lead Nitrate Based Perovskite Films,” 2019. [27] A. Manglik, S. Sharma, and V. Kudesia, “Kinetics of oxidation of isopropyl alcohol by aóueous iodine,” Reaction Kinetics and Catalysis Letters, vol. 15, no. 4, pp. 467-473, 1981. [28] T.-Y. Hsieh, T.-S. Su, M. Ikegami, T.-C. Wei, and T. Miyasaka, “Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition,” Materials Today Energy, 2018/02/15/, 2018. [29] F. Huang, A. R. Pascoe, W. Q. Wu, Z. Ku, Y. Peng, J. Zhong, R. A. Caruso, and Y. B. Cheng, “Effect of the microstructure of the functional layers on the efficiency of perovskite solar cells,” Advanced Materials, vol. 29, no. 20, pp. 1601715, 2017. [30] C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang, “Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells,” Nature communications, vol. 6, no. 1, pp. 1-7, 2015. [31] A. Ummadisingu, L. Steier, J.-Y. Seo, T. Matsui, A. Abate, W. Tress, and M. Grätzel, “The effect of illumination on the formation of metal halide perovskite films,” Nature, vol. 545, no. 7653, pp. 208-212, 2017. [32] G. Li, T. Zhang, and Y. Zhao, “Hydrochloric acid accelerated formation of planar CH 3 NH 3 PbI 3 perovskite with high humidity tolerance,” Journal of Materials Chemistry A, vol. 3, no. 39, pp. 19674-19678, 2015. [33] Y.-K. Ren, X.-H. Ding, Y.-H. Wu, J. Zhu, T. Hayat, A. Alsaedi, Y.-F. Xu, Z.-Q. Li, S.-F. Yang, and S.-Y. Dai, “Temperature-assisted rapid nucleation: a facile method to optimize the film morphology for perovskite solar cells,” Journal of Materials Chemistry A, vol. 5, no. 38, pp. 20327-20333, 2017. [34] D. Kramer, “Dependence of surface stress, surface energy and surface tension on potential and charge,” Physical Chemistry Chemical Physics, vol. 10, no. 1, pp. 168-177, 2008. [35] J. Wang, D. Lin, T. Zhang, M. Long, T. Shi, K. Chen, Z. Liang, J. Xu, W. Xie, and P. Liu, “Thermal and illumination effects on a PbI 2 nanoplate and its transformation to CH 3 NH 3 PbI 3 perovskite,” CrystEngComm, vol. 21, no. 4, pp. 736-740, 2019. [36] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent annealing of perovskite‐induced crystal growth for photovoltaic‐device efficiency enhancement,” Advanced Materials, vol. 26, no. 37, pp. 6503-6509, 2014. [37] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, and G. Cui, “Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells,” Angewandte Chemie International Edition, vol. 54, no. 33, pp. 9705-9709, 2015. [38] Z. Shao, Z. Wang, Z. Li, Y. Fan, H. Meng, R. Liu, Y. Wang, A. Hagfeldt, G. Cui, and S. Pang, “A scalable methylamine gas healing strategy for high-efficiency inorganic perovskite solar cells,” Angewandte Chemie International Edition, vol. 58, no. 17, pp. 5587-5591, 2019. [39] Y. Chang, L. Wang, J. Zhang, Z. Zhou, C. Li, B. Chen, L. Etgar, G. Cui, and S. Pang, “CH3NH2 gas induced (110) preferred cesium-containing perovskite films with reduced PbI6 octahedron distortion and enhanced moisture stability,” Journal of Materials Chemistry A, vol. 5, no. 10, pp. 4803-4808, 2017. [40] M.-J. Zhang, N. Wang, S.-P. Pang, Q. Lv, C.-S. Huang, Z.-M. Zhou, and F.-X. Ji, “Carrier transport improvement of CH3NH3PbI3 film by methylamine gas treatment,” ACS Applied Materials & Interfaces, vol. 8, no. 45, pp. 31413-31418, 2016/11/16, 2016. [41] D. L. Jacobs, and L. Zang, “Thermally induced recrystallization of MAPbI3 perovskite under methylamine atmosphere: an approach to fabricating large uniform crystalline grains,” Chemical Communications, vol. 52, no. 71, pp. 10743-10746, 2016. [42] J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama, “Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells,” The Journal of Physical Chemistry Letters, vol. 5, no. 16, pp. 2903-2909, 2014/08/21, 2014. [43] S. R. Raga, L. K. Ono, and Y. Qi, “Rapid perovskite formation by CH 3 NH 2 gas-induced intercalation and reaction of PbI 2,” Journal of Materials Chemistry A, vol. 4, no. 7, pp. 2494-2500, 2016. [44] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, and G. Cui, “Methylamine‐gas‐induced defect‐healing behavior of CH3NH3PbI3 thin films for perovskite solar cells,” Angewandte Chemie, vol. 127, no. 33, pp. 9841-9845, 2015. [45] H. S. Kim, J. Y. Seo, and N. G. Park, “Material and device stability in perovskite solar cells,” ChemSusChem, vol. 9, no. 18, pp. 2528-2540, 2016. [46] T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, and T. Dittrich, “Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers,” Applied Physics Letters, vol. 103, no. 18, pp. 183906, 2013. [47] N. Aristidou, I. Sanchez‐Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, and S. A. Haque, “The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers,” Angewandte Chemie, vol. 127, no. 28, pp. 8326-8330, 2015. [48] S. Rühle, “Tabulated values of the Shockley–Queisser limit for single junction solar cells,” Solar Energy, vol. 130, pp. 139-147, 2016. [49] "The Shockley Queisser Efficiency Limit," http://solarcellcentral.com/limits_page.html. [50] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy & Environmental Science, vol. 7, no. 3, pp. 982-988, 2014. [51] J. W. Lee, D. J. Seol, A. N. Cho, and N. G. Park, “High‐efficiency perovskite solar cells based on the black polymorph of HC (NH2) 2PbI3,” Advanced Materials, vol. 26, no. 29, pp. 4991-4998, 2014. [52] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, and J. H. Noh, “Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells,” Science, vol. 356, no. 6345, pp. 1376-1379, 2017. [53] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorganic Chemistry, vol. 52, no. 15, pp. 9019-9038, 2013. [54] T. M. Koh, K. Fu, Y. Fang, S. Chen, T. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” The Journal of Physical Chemistry C, vol. 118, no. 30, pp. 16458-16462, 2014. [55] D. J. Seol, J. W. Lee, and N. G. Park, “On the role of interfaces in planar‐structured HC (NH2) 2PbI3 perovskite solar cells,” ChemSusChem, vol. 8, no. 14, pp. 2414-2419, 2015. [56] N. Liu, and C. Yam, “First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers,” Physical Chemistry Chemical Physics, vol. 20, no. 10, pp. 6800-6804, 2018. [57] Y. Zou, H. Y. Wang, Y. Qin, C. Mu, Q. Li, D. Xu, and J. P. Zhang, “Reduced Defects of MAPbI3 Thin Films Treated by FAI for High‐Performance Planar Perovskite Solar Cells,” Advanced Functional Materials, vol. 29, no. 7, pp. 1805810, 2019. [58] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells,” Science, vol. 356, no. 6345, pp. 1376-1379, 2017.
|