帳號:guest(3.139.103.57)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林承毅
作者(外文):Lin, Cheng-Yi
論文名稱(中文):基於硝酸鉛之三步法製備鈣鈦礦太陽能電池之技術開發
論文名稱(外文):Fabrication of perovskite solar cell from aqueous Pb(NO3)2 precursor via a three-step procedure
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):劉振良
潘詠庭
口試委員(外文):Liu, Cheng-Liang
Pan, Yung-Tin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:109032539
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:110
中文關鍵詞:鈣鈦礦硝酸鉛三步法
外文關鍵詞:perovskiteleadnitratethree step procedure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:243
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鈣鈦礦太陽能電池由於轉換效率進展極為快速,成為新興太陽能電池界的超級新星。以有機鉛之鹵化物為基礎的鈣鈦礦結構材料具備了優異的光電性能與製膜簡易等的優勢,使其應用在薄膜型太陽電池的表現非常突出。然而在製備此類鈣鈦礦薄膜的過程中,不論是常見的一步法或是兩步法,大多會使用具毒性且致癌性碘化鉛及二甲基甲醯胺等溶劑,造成了鈣鈦礦太陽電池發展與大量使用的隱憂。
在此論文中,我們延續並改良的了本團隊先前開發以低毒性硝酸鉛水溶液系統之三步法製備鈣鈦礦薄膜的研究,期望獲得更高的光轉效率。具體而言採取了三個改善方法。此三種方法包括製程中引入太陽光照協助鈣鈦礦成核、甲胺(MA)蒸氣對鈣鈦礦表面進行處理及添加甲脒陽離子(FA+)以調整鈣鈦礦之化學組成。其中第一種方法會同時照射太陽光模擬器提供之太陽光以進行成核的控制,以達縮小鈣鈦礦的晶粒大小與減少晶界以達到更好的表面形貌。第二部分則是在鈣鈦礦薄膜進行MA蒸氣處理,讓薄膜得以蒸氣下溶解再結晶以有效攤平(levelling)原先粗糙的表面。最後一部分,會利用FA+陽離子旋塗方式以完成雙重陽離子的FAMAPbI3的最終鈣鈦礦組成,得以提高元件之光電效率及穩定性。
此一製程可以製作最高效率達14.42%的鈣鈦礦太陽電池,可望為硝酸鉛水溶液系統的應用理出一條嶄新的道路。

Perovskite solar cells (PSCs) has become a new trend in the solar cell industry because of its fast development on efficiency. The lead and halogen based perovskite structure has excellent photoelectronic properties and are easy to fabricate. However, the prevalent use of lead iodide or toxic DMF in either one-step or two-step procedures has become a huge drawback.
In this study, we optimize the non-toxic three step aqueous Pb(NO3)2 system previously reported by our team, expecting to achieve a higher efficiency. We report three kinds of approach to improve the film quality of three-step aqueous Pb(NO3)2 system. These three approach involves a novel method named sun illumination, introduction of methylamine(MA) gas treatment and addition of formaldinium cations(FA+). The sun illumination method is used to control the nucleation and perovskite growth in order to reduce defects. The MA gas treatment approach involves instant liquification and recrystallization which can level the rough morphology. The FA+ incorporation can effectively fabricate a mixed-cation perovskite FAMAPbI3 which improves both stability and efficiency.
The final conversion efficiency( PCE) improved to 14.42%, leading to a new way for three-step lead nitrate procedure.
目錄.......................................................................................................................................................... 4
圖目錄...................................................................................................................................................... 2
表目錄....................................................................................................................................................10
摘要.......................................................................................................................................................... 2
ABSTRACT ............................................................................................................................................ 3
1 第一章 緒論........................................................................................................................................ 11
1-1 前言............................................................................................................................................. 11
1-2 太陽能電池的基本原理 ............................................................................................................13
1-3 太陽能的歷史與發展 ................................................................................................................13
2 第二章 文獻回顧..............................................................................................................................16
2-1 鈣鈦礦太陽能電池.....................................................................................................................16
2-1.1 鈣鈦礦的起源、特性與結構 .............................................................................................16
2-1.2 鈣鈦礦太陽能電池的歷史與發展 .....................................................................................18
2-1.3 鈣鈦礦太陽能電池的結構 ................................................................................................. 19
2-1.4 鈣鈦礦太陽能電池的工作原理 .........................................................................................20
2-2 鈣鈦礦薄膜的製備方式.............................................................................................................21
2-2.1 以碘化鉛為前驅物之旋轉塗佈一步法 .............................................................................22
2-2.2 以碘化鉛前驅物之旋轉塗佈兩步法 .................................................................................23
2-2.3 硝酸鉛水溶液前驅物 .........................................................................................................24
2-3 鈣鈦礦層表面形貌優化的方法................................................................................................. 42
2-3.1 太陽光照射法 ....................................................................................................................42
2-3.2 MA 蒸氣處理法.................................................................................................................44
2-3.3 添加劑方法.........................................................................................................................47
2-3.4 成核溫度控制法 .................................................................................................................49
2-4 兩步法中添加 FA+陽離子進行組成調控工程..........................................................................51
2-5 研究動機....................................................................................................................................56
3 第三章 實驗方法與儀器分析 ..........................................................................................................57
3-1 實驗藥品與材料.........................................................................................................................57
3-2 實驗儀器與分析設備.................................................................................................................58
3-3 儀器介紹....................................................................................................................................59
3-3.1 X 光繞射分析儀 (X-Ray Diffractometer, XRD) .............................................................59
3-3.2 紫外光-可見光光譜儀(Ultraviolet-visible spectrometer, UV-vis)...................................60
3-3.3 場發射掃描式顯微鏡(Field emission scanning electron microscope, FE-SEM)......60
5
3-3.4 聚焦離子束電子束掃瞄式顯微鏡系統 (Dual-beam Focused Ion Beam system, FIB)
......................................................................................................................................................61
3-3.5 太陽光模擬器(Solar Simulator)........................................................................................62
3-3.5.1 短路電流及短路電流密度(Isc&Jsc)......................................................................................... 64
3-3.5.2 開路電壓(Open circuit voltage,Voc) ......................................................................................... 65
3-3.6 紫外光臭氧清洗機(UV-ozone) ..........................................................................................66
3-4 實驗方法.............................................................................................................................68
3-4.1 鈣鈦礦太陽能元件製備 .....................................................................................................68
FTO 導電玻璃基板前處理..................................................................................................................... 68
二氧化鈦緻密層製備流程...................................................................................................................... 68
二氧化鈦多孔支架層製備流程.............................................................................................................. 68
鈣鈦礦吸光層製備.................................................................................................................................. 68
硝酸鉛水溶液配備 ............................................................................................................................ 69
PbI2/IBA 製備.................................................................................................................................... 69
鈣鈦礦薄膜層製備流程 .................................................................................................................... 69
鈣鈦礦 MA 蒸氣處理方式................................................................................................................ 70
鈣鈦礦添加 FA+離子......................................................................................................................... 70
電洞傳輸層製備流程.............................................................................................................................. 71
金屬背電極蒸鍍...................................................................................................................................... 71
4 第四章 實驗結果與討論..................................................................................................................72
4-1 太陽光照對碘化鉛薄膜之影響................................................................................................. 72
4-1.1 碘化鉛薄膜於 MAI/IPA 溶液浸泡分析............................................................................72
4-1.1.1 光照對 MAPbI3形貌之影響....................................................................................................... 72
4-1.1.2 光照對轉化率之影響.................................................................................................................. 75
4-1.1.3 光照對鈣鈦礦吸收度之影響...................................................................................................... 76
4-1.2 碘化鉛薄膜於 MAX/IPA 溶液浸泡分析 ..........................................................................78
4-1.2.1 光照對形貌之影響...................................................................................................................... 78
4-1.2.2 光照對轉化率之影響.................................................................................................................. 79
4-2 水性硝酸鉛三步法鈣鈦礦太陽能電池之表現 .........................................................................82
4-2.1 MA 蒸氣處理法後之元件性質及表現..............................................................................82
4-2.1.1MA 蒸氣處理後之元件性質....................................................................................................... 82
4-2.1.2MA 蒸氣處理後之元件表現....................................................................................................... 89
4-2.2 FAI 之添加以製備多重陽離子 FAMAPbI3鈣鈦礦元件 .................................................91
5 第五章 結論........................................................................................................................................99
6 第六章 未來工作..............................................................................................................................103
7 第七章 參考文獻..............................................................................................................................104
[1] “World-Energy-Scenarios_Composing-energy-futures-to-2050_Executive-summary,” 2013.
[2] A.-E. Becquerel, “Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques,” CR Acad. Sci, vol. 9, no. 145, pp. 1, 1839.
[3] W. G. Adams, and R. E. Day, “V. The action of light on selenium,” Proceedings of the Royal Society of London, vol. 25, no. 171-178, pp. 113-117, 1877.
[4] C. E. Fritts, “On a new form of selenium cell, and some electrical discoveries made by its use,” American Journal of Science, vol. 3, no. 156, pp. 465-472, 1883.
[5] https://www.nrel.gov/pv/cell-efficiency.html.
[6] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[7] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, vol. 3, no. 10, pp. 4088-4093, 2011.
[8] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J. E. Moser, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific reports, vol. 2, no. 1, pp. 1-7, 2012.
[9] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395-398, 2013.
[10] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells,” Nature materials, vol. 13, no. 9, pp. 897-903, 2014.
[11] J.-X. Song, X.-X. Yin, Z.-F. Li, and Y.-W. Li, “Low-temperature-processed metal oxide electron transport layers for efficient planar perovskite solar cells,” Rare Metals, vol. 40, no. 10, pp. 2730-2746, 2021.
[12] J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, “Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency,” Energy & Environmental Science, vol. 8, no. 5, pp. 1602-1608, 2015.
[13] D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, and D. Kim, “Self-formed grain boundary healing layer for highly efficient CH 3 NH 3 PbI 3 perovskite solar cells,” Nature Energy, vol. 1, no. 7, pp. 1-8, 2016.
[14] S. Shin, S. Lee, and S. I. Seok, “Exploring wide bandgap metal oxides for perovskite solar cells,” APL Materials, vol. 7, no. 2, pp. 022401, 2019.
[15] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, pp. 316-319, 2013.
[16] A. Ummadisingu, and M. Grätzel, “Revealing the detailed path of sequential deposition for metal halide perovskite formation,” Science advances, vol. 4, no. 2, pp. e1701402, 2018.
[17] D. H. Cao, C. C. Stoumpos, C. D. Malliakas, M. J. Katz, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, “Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?,” Apl Materials, vol. 2, no. 9, pp. 091101, 2014.
[18] A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi, S. Hayase, and Y. Murata, “Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers,” Chemistry Letters, vol. 43, no. 5, pp. 711-713, 2014.
[19] T.-Y. Hsieh, T.-C. Wei, K.-L. Wu, M. Ikegami, and T. Miyasaka, “Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor,” Chemical Communications, vol. 51, no. 68, pp. 13294-13297, 2015.
[20] Y. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, R. J. Hamers, J. C. Wright, and S. Jin, “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” Journal of the American Chemical Society, vol. 137, no. 17, pp. 5810-5818, 2015.
[21] T.-Y. Hsieh, C.-K. Huang, T.-S. Su, C.-Y. Hong, and T.-C. Wei, “Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance,” ACS Applied Materials & Interfaces, vol. 9, no. 10, pp. 8623-8633, 2017/03/15, 2017.
[22] T.-Y. Hsieh, T.-S. Su, M. Ikegami, T.-C. Wei, and T. Miyasaka, “Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition,” Materials Today Energy, vol. 14, pp. 100125, 2019.
[23] P. Zhai, T.-S. Su, T.-Y. Hsieh, W.-Y. Wang, L. Ren, J. Guo, and T.-C. Wei, “Toward clean production of plastic perovskite solar cell: Composition-tailored perovskite absorber made from aqueous lead nitrate precursor,” Nano energy, vol. 65, pp. 104036, 2019.
[24] 鄭宇婷, “Compositional Engineering on Perovskite Solar Cells Fabricated Using Lead-Nitrate Aqueous Precursors,” 2020.
[25] K. Sveinbjörnsson, N. K. K. Thein, Z. Saki, S. Svanström, W. Yang, U. B. Cappel, H. Rensmo, G. Boschloo, K. Aitola, and E. M. Johansson, “Preparation of mixed-ion and inorganic perovskite films using water and isopropanol as solvents for solar cell applications,” Sustainable Energy & Fuels, vol. 2, no. 3, pp. 606-615, 2018.
[26] 謝順來, “Applying Low-toxic 3-step Method for Fabricating Aqueous Lead Nitrate Based Perovskite Films,” 2019.
[27] A. Manglik, S. Sharma, and V. Kudesia, “Kinetics of oxidation of isopropyl alcohol by aóueous iodine,” Reaction Kinetics and Catalysis Letters, vol. 15, no. 4, pp. 467-473, 1981.
[28] T.-Y. Hsieh, T.-S. Su, M. Ikegami, T.-C. Wei, and T. Miyasaka, “Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition,” Materials Today Energy, 2018/02/15/, 2018.
[29] F. Huang, A. R. Pascoe, W. Q. Wu, Z. Ku, Y. Peng, J. Zhong, R. A. Caruso, and Y. B. Cheng, “Effect of the microstructure of the functional layers on the efficiency of perovskite solar cells,” Advanced Materials, vol. 29, no. 20, pp. 1601715, 2017.
[30] C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang, “Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells,” Nature communications, vol. 6, no. 1, pp. 1-7, 2015.
[31] A. Ummadisingu, L. Steier, J.-Y. Seo, T. Matsui, A. Abate, W. Tress, and M. Grätzel, “The effect of illumination on the formation of metal halide perovskite films,” Nature, vol. 545, no. 7653, pp. 208-212, 2017.
[32] G. Li, T. Zhang, and Y. Zhao, “Hydrochloric acid accelerated formation of planar CH 3 NH 3 PbI 3 perovskite with high humidity tolerance,” Journal of Materials Chemistry A, vol. 3, no. 39, pp. 19674-19678, 2015.
[33] Y.-K. Ren, X.-H. Ding, Y.-H. Wu, J. Zhu, T. Hayat, A. Alsaedi, Y.-F. Xu, Z.-Q. Li, S.-F. Yang, and S.-Y. Dai, “Temperature-assisted rapid nucleation: a facile method to optimize the film morphology for perovskite solar cells,” Journal of Materials Chemistry A, vol. 5, no. 38, pp. 20327-20333, 2017.
[34] D. Kramer, “Dependence of surface stress, surface energy and surface tension on potential and charge,” Physical Chemistry Chemical Physics, vol. 10, no. 1, pp. 168-177, 2008.
[35] J. Wang, D. Lin, T. Zhang, M. Long, T. Shi, K. Chen, Z. Liang, J. Xu, W. Xie, and P. Liu, “Thermal and illumination effects on a PbI 2 nanoplate and its transformation to CH 3 NH 3 PbI 3 perovskite,” CrystEngComm, vol. 21, no. 4, pp. 736-740, 2019.
[36] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent annealing of perovskite‐induced crystal growth for photovoltaic‐device efficiency enhancement,” Advanced Materials, vol. 26, no. 37, pp. 6503-6509, 2014.
[37] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, and G. Cui, “Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells,” Angewandte Chemie International Edition, vol. 54, no. 33, pp. 9705-9709, 2015.
[38] Z. Shao, Z. Wang, Z. Li, Y. Fan, H. Meng, R. Liu, Y. Wang, A. Hagfeldt, G. Cui, and S. Pang, “A scalable methylamine gas healing strategy for high-efficiency inorganic perovskite solar cells,” Angewandte Chemie International Edition, vol. 58, no. 17, pp. 5587-5591, 2019.
[39] Y. Chang, L. Wang, J. Zhang, Z. Zhou, C. Li, B. Chen, L. Etgar, G. Cui, and S. Pang, “CH3NH2 gas induced (110) preferred cesium-containing perovskite films with reduced PbI6 octahedron distortion and enhanced moisture stability,” Journal of Materials Chemistry A, vol. 5, no. 10, pp. 4803-4808, 2017.
[40] M.-J. Zhang, N. Wang, S.-P. Pang, Q. Lv, C.-S. Huang, Z.-M. Zhou, and F.-X. Ji, “Carrier transport improvement of CH3NH3PbI3 film by methylamine gas treatment,” ACS Applied Materials & Interfaces, vol. 8, no. 45, pp. 31413-31418, 2016/11/16, 2016.
[41] D. L. Jacobs, and L. Zang, “Thermally induced recrystallization of MAPbI3 perovskite under methylamine atmosphere: an approach to fabricating large uniform crystalline grains,” Chemical Communications, vol. 52, no. 71, pp. 10743-10746, 2016.
[42] J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama, “Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells,” The Journal of Physical Chemistry Letters, vol. 5, no. 16, pp. 2903-2909, 2014/08/21, 2014.
[43] S. R. Raga, L. K. Ono, and Y. Qi, “Rapid perovskite formation by CH 3 NH 2 gas-induced intercalation and reaction of PbI 2,” Journal of Materials Chemistry A, vol. 4, no. 7, pp. 2494-2500, 2016.
[44] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, and G. Cui, “Methylamine‐gas‐induced defect‐healing behavior of CH3NH3PbI3 thin films for perovskite solar cells,” Angewandte Chemie, vol. 127, no. 33, pp. 9841-9845, 2015.
[45] H. S. Kim, J. Y. Seo, and N. G. Park, “Material and device stability in perovskite solar cells,” ChemSusChem, vol. 9, no. 18, pp. 2528-2540, 2016.
[46] T. Supasai, N. Rujisamphan, K. Ullrich, A. Chemseddine, and T. Dittrich, “Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers,” Applied Physics Letters, vol. 103, no. 18, pp. 183906, 2013.
[47] N. Aristidou, I. Sanchez‐Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, and S. A. Haque, “The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers,” Angewandte Chemie, vol. 127, no. 28, pp. 8326-8330, 2015.
[48] S. Rühle, “Tabulated values of the Shockley–Queisser limit for single junction solar cells,” Solar Energy, vol. 130, pp. 139-147, 2016.
[49] "The Shockley Queisser Efficiency Limit," http://solarcellcentral.com/limits_page.html.
[50] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy & Environmental Science, vol. 7, no. 3, pp. 982-988, 2014.
[51] J. W. Lee, D. J. Seol, A. N. Cho, and N. G. Park, “High‐efficiency perovskite solar cells based on the black polymorph of HC (NH2) 2PbI3,” Advanced Materials, vol. 26, no. 29, pp. 4991-4998, 2014.
[52] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, and J. H. Noh, “Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells,” Science, vol. 356, no. 6345, pp. 1376-1379, 2017.
[53] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorganic Chemistry, vol. 52, no. 15, pp. 9019-9038, 2013.
[54] T. M. Koh, K. Fu, Y. Fang, S. Chen, T. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells,” The Journal of Physical Chemistry C, vol. 118, no. 30, pp. 16458-16462, 2014.
[55] D. J. Seol, J. W. Lee, and N. G. Park, “On the role of interfaces in planar‐structured HC (NH2) 2PbI3 perovskite solar cells,” ChemSusChem, vol. 8, no. 14, pp. 2414-2419, 2015.
[56] N. Liu, and C. Yam, “First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers,” Physical Chemistry Chemical Physics, vol. 20, no. 10, pp. 6800-6804, 2018.
[57] Y. Zou, H. Y. Wang, Y. Qin, C. Mu, Q. Li, D. Xu, and J. P. Zhang, “Reduced Defects of MAPbI3 Thin Films Treated by FAI for High‐Performance Planar Perovskite Solar Cells,” Advanced Functional Materials, vol. 29, no. 7, pp. 1805810, 2019.
[58] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells,” Science, vol. 356, no. 6345, pp. 1376-1379, 2017.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *