帳號:guest(3.133.122.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何勝峯
作者(外文):Ho, Sheng-Feng
論文名稱(中文):三元金屬硫化物應用在高效能合金轉化型電池儲能系統
論文名稱(外文):Application of ternary metal sulfide in high-efficiency alloy-conversion battery energy storage system
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing-Yu
口試委員(中文):曾院介
呂明諺
口試委員(外文):Tseng, Yuan-Chieh
Lu, Ming-Yan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:109032538
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:48
中文關鍵詞:金屬硫化物儲能系統電池
外文關鍵詞:Metal sulfideEnergy storage systemBattery
相關次數:
  • 推薦推薦:0
  • 點閱點閱:160
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
金屬硫屬化物,例如 Sb2S3,由於具有多種優勢,已成為可充電鋰離子電池的有前途的負極材料。然而,最具挑戰性的一個是它的低循環性能,因為它具有多種效應,包括低電導率、大體積膨脹、轉化/合金化和穿梭效應(來自 S)。在這裡,我們報告了使用 AgSbS2 奈米線作為陽極材料的金屬硫屬化物陽極,其循環穩定性超過 5000 次。當 AgSbS2 陽極循環時,銀會從奈米線中析出,形成並對陽極穩定性起關鍵作用。 Ag 可以有效提高電極電導率,自發增加離子擴散速率,這一點已被各種技術證實,包括實驗 EIS、TEM 和吸附等。重要的是,AgSbS2 奈米線陽極在 500 和 2000 mA g-1 的電流密度下可提供 3000 和 5000 次循環,分別優於當前最先進的金屬硫屬化物陽極。另一方面,新興的轉化型鉀離子電池負極材料結合了磷和硫化物的優點,通過轉化反應產生協同效應,抑制穿梭效應,提高鉀離子擴散速率。其固有特性促進電荷轉移並確保高理論容量。但由於缺乏合理的設計和調控,無法克服充放電過程中材料粉化嚴重和鉀離子擴散緩慢的問題,因此三元金屬硫化物充放電後的表現大多在300~500 mA h g-1之間。可逆電容約為其理論電容的50%,鉀離子的擴散係數大多落在10-11~10-10 cm2·s-1之間。在這項研究中,我們提出了一種正交三元金屬磷化物,它可以通過克服不穩定的動力學擴散來有效控制高度可逆的轉化反應,並降低材料的內阻,使鉀離子可以通過特定的通道有效地吸附和擴散,通過概念驗證實驗,材料的適當且均勻的親和力也可以捕獲多硫化物的損失,這反過來又建立了穩定的可循環性和高電容貢獻。此外,充放電後的產物會形成可逆的緊密連接的結,以保持充放電後的穩定性。它可以達到優於其他三元金屬硫化物(100次循環,650.2 mA h g-1),高達理論電容(687.3 mA h g-1)的87.3%,這在PIB的相關研究中是前所未有的。此外,全電池和混合電容器還表現出有吸引力的能量密度,分別顯示(800 次循環,79.6 W h kg-1)和(5000 次循環,80.3 W h kg-1)。結合這一設計理念和實踐,證明這項工作將是一項重要且廣泛應用的設計策略,闡明瞭如何利用潛在的金屬磷硫化物解決硫屬化物系列的電化學困境,促進電池的優異性能,為鉀離子儲能領域陽極設計的可靠捷徑。該工作解決了鋰硫型金屬硫屬化物電池穿梭效應的多重問題,為未來三元金屬硫族化物材料的模型提供了啟示。
Metal chalcogenides, e.g., Sb2S3, have become a promising anode material for rechargeable lithium-ion batteries due to multiple advantages. However, one the most challenging is its low cycling performance due to multiple effective, including low conductivity, large volume expansion, conversion/alloying, and shuttling effect (from S). Here we report a metal chalcogenide anode that performs cycling stability beyond 5000 times using AgSbS2 nanowire as anode materials. While AgSbS2 anode cycled, silver exsolution out nanowires to form and plays critical role for anode stability. Ag can effectively enhance the electrode conductivity, spontaneously increase ion diffusion rate, which are confirmed by various techniques, including experimental EIS, TEM and adsorption, etc. Importantly, AgSbS2 nanowires anode delivers 3000 and 5000 cycles at the current density of 500 and 2000 mA g-1, respectively, which are much superior to the current art-of-the state metal chalcogenide anodes. On the other hand, te emerging anode materials for conversion-type potassium ion batteries combine the advantages of phosphorus and chalcogenides, and produce synergistic effects through the conversion reaction to suppress the shuttle effect and increase the rate of potassium ion diffusion. Its intrinsic properties promote charge transfer and ensure high theoretical capacity. However, due to the lack of rational design and regulation, it cannot overcome the severe material pulverization and slow potassium ion diffusion during charge and discharge, so the ternary metal sulfides mostly exhibit between 300 and 500 mA h g-1 after charge and discharge. The reversible capacitance is about 50 % of its theoretical capacitance, and the diffusion coefficient of potassium ions mostly falls between 10-11~10-10 cm2 s-1. In this study, we propose an orthorhombic ternary metal phosphide, which can effectively control the highly reversible conversion reaction by overcoming unstable kinetic diffusion, and the internal resistance of the material is reduced to enable potassium ions can be efficiently adsorbed and diffused through specific channels, and the loss of polysulfides can also be captured by the appropriate and uniform affinity of the material through proof-of-concept experiments, which in turn establishes stable cyclability and high capacitance contribution. In addition, the product after charge and discharge will form a reversible and tightly connected junction to maintain the stability after charge and discharge. It can achieve better than other ternary metal sulfides (100 cycles, 650.2 mA h g-1), up to 87.3% of the theoretical capacitance (687.3 mA h g-1), which is unprecedented in the related research of PIB. In addition, the full-cell and hybrid capacitors also exhibit attractive energy densities, showing (800 cycles, 79.6) and (5000 cycles, 80.3 W h kg-1), respectively. Combined with this design concept and practice, it is proved that this work will be an important and widely used design strategy, which illustrates how to utilize the potential metal phosphorus sulfides to solve the electrochemical dilemma of chalcogenide series to promote excellent battery performance, which provides a reliable shortcut for anode design in the field of potassium ion energy storage. This work resolves the multiple problems of shuttling effect to Li sulfur types batteries of metal chalcogenides, and sheds light on the model of ternary metal chalcogenide materials in the future.
中文摘要…………………………………………………………………………….i,ii
Abstract…………………………………………………………………………….iii,iv
Table of contents………………………………………………………………........v,vi
List of figures………………………………………………………..………………vii
Chapter 1. Introduction…………………………………………………………...1
1.1 Recent developments of anode material in LIBs..……………..………..1
1.2 Metal chalcogenides developments and challenges………………..…...1
1.3 A new metal chalcogenide for LIBs application………………………..1
1.4 A new metal chalcogenide for LIBs application……………………......2
1.5 Challenges of ternary metal sulfide for PIBs application……………….3
1.6 A high diffusivity ternary metal sulfide…………………………………4
Chapter 2. Experimental Section…………………………………………………5
2.1 Materials………………………………………………………………….5
2.2 Material Characterizations……………………………………………….5
2.3 Synthesis of AgSbS2 nanowires………………………………………….5
2.4 Synthesis of Sb2S3 nanowires…………………………………………….6
2.5 Synthesis of Sb2S3 / C nanocomposites…………………………………..6
2.6 Synthesis of Cu3PS4 ……………………………………………………...6
2.7 Synthesis of Cu3PS4 / C…………………………………………………...6
2.8 Lithium-ion full coin cell assembly…………………………………….....7
2.9 Synthesis of Prussian blue (KxFe(Fe(CN)6))·y H2O………….…..………7
2.10 Electrochemical measurement……………………………………………..7
2.11 Computational method……………………………………………………..7
Chapter 3. Result and discussion……………………………………………………9
3.1 Characterization of AgSbS2 nanowires……………………………………..9
3.2 Electrochemical performance of AgSbS2 nanowires half cells…………...12
3.3 Reaction mechanism of AgSbS2 nanowires……………………………….16
3.4 DFT calculation……………………………………………………………20
3.5 Electrochemical performance of AgSbS2 full cell………………………....23
3.6 Material characterization of Cu3PS4…………….………………………....25
3.7 Electrochemical performance of Cu3PS4…………….…………..………...27
3.8 Reaction mechanism of Cu3PS4…………...…….………………………....30
3.9 Kinetic analysis………………………………….………………………....35
4.0 Potassium polysulfides adsorption………………………………………....38
4.1 Potassium ion full cell and hybrid capacitor………………………….…....40
4.2 In-depth discussion between the electrochemical result and analysis……...44
4.3 Conclusion…………………………………………………………….…....46
Reference……………………………………………………………………....47
1. Wang, J., N. Du, H. Zhang, J. Yu and D. Yang Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. J. Mater. Chem. C 2012, 22, 1511-1515.
2. Buqa, H., D. Goers, M. Holzapfel, M. E. Spahr and P. Novák High rate capability of graphite negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A474.
3. Li, Y., B. Tan and Y. Wu Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265-270.
4. Gong, X., Y. Zheng, J. Zheng, S. Cao, H. Wen, B. Lin and Y. Sun Surface‐Functionalized Graphite as Long Cycle Life Anode Materials for Lithium‐ion Batteries. ChemElectroChem 2020.
5. Daniel, T., J. Henry, K. Mohanraj and G. Sivakumar AgSbS2 and Ag3SbS3 absorber materials for photovoltaic applications. Mater. Chem. Phys. 2016, 181, 415-421.
6. Yang, W.-C. and M.-W. Lee Enhanced photovoltaic performance in AgSbS2 liquid-junction semiconductor-sensitized solar cells. J. Electrochem. Soc. 2013, 161, H92.
7. Zhang, Z., Y. Fu, C. Zhou and Y. Lai Facile synthesis of CuSbS 2 blocks, and their lithium ion storage performance. J. Electron. Mater. 2015, 44, 252-257.
8. Tang, Q., H. Su, Y. Cui, A. P. Baker, Y. Liu, J. Lu, X. Song, H. Zhang, J. Wu and H. Yu Ternary tin-based chalcogenide nanoplates as a promising anode material for lithium-ion batteries. J. Power Sources 2018, 379, 182-190.
9. Abbasnezhad, A., H. Asgharzadeh, A. A. Hamedani and S. H. Soytas One-pot synthesis of tin chalcogenide-reduced graphene oxide-carbon nanotube nanocomposite as anode material for lithium-ion batteries. Dalton Trans. 2020, 49, 5890-5897.
10. Jia, N., M. Zhang, B. Li, C. Li, Y. Liu, Y. Zhang, T. Yu, Y. Liu, D. Cui and X. Tao Ternary chalcogenide LiInSe2: A promising high-performance anode material for lithium ion batteries. Electrochim. Acta 2019, 320, 134562.
11. Chen, D., G. Ji, B. Ding, Y. Ma, B. Qu, W. Chen and J. Y. Lee Double transition-metal chalcogenide as a high-performance lithium-ion battery anode material. Ind. Eng. Chem. Res. 2014, 53, 17901-17908.
12. Choi, H., S. Kim, J. M. Luther, S.-W. Kim, D. Shin, M. C. Beard and S. Jeong Facet-specific ligand interactions on ternary AgSbS2 colloidal quantum dots. Chem. Eur. J. 2017, 23.
13. Saksornchai, E. and J. Kavinchan (2018). Its Optical Property and Characterization of Silver Antimony Sulfide Nanostructured Clusters Synthesized Using a Facile Wet Chemical Route. Materials Science Forum, Trans Tech Publ.
14. Zhou, B., M. Li, Y. Wu, C. Yang, W. H. Zhang and C. Li Monodisperse AgSbS2 Nanocrystals: Size‐Control Strategy, Large‐Scale Synthesis, and Photoelectrochemistry. Chem. Eur. J. 2015, 21, 11143-11151.
15. Han, M., J. Jia and W. Wang Facile synthesis of stoichiometric AgSbS2 silk-like nanoflowers for solar energy conversion. Mater. Lett. 2016, 179, 130-133.
16. Tipcompor, N., S. Thongtem and T. Thongtem Characterization of cubic AgSbS2 nanostructured flowers synthesized by microwave-assisted refluxing method. J. Nanomater. 2013, 2013.
17. Gutwirth, J., T. Wagner, P. Němec, S. Kasap and M. Frumar Thermal and optical properties of AgSbS2 thin films prepared by pulsed laser deposition (PLD). J Non Cryst Solids 2008, 354, 497-502.
18. Yu, L., M. Han, Y. Wan, J. Jia and G. Yi Synthesis of stoichiometric AgSbS2 nanospheres via one-step solvothermal chemical process. Mater. Lett. 2015, 161, 447-450.
19. Kavinchan, J., S. Thongtem, E. Saksornchai and T. Thongtem CRYSTAL GROWTH OF AgSbS2 (MIARGYRITE) NANOSTRUCTURE BY CYCLIC MICROWAVE RADIATION. Chalcogenide Lett. 2015, 12, 325-331.
20. Wang, Q., R. Gao and J. Li Porous, self-supported Ni 3 S 2∕ Ni nanoarchitectured electrode operating through efficient lithium-driven conversion reactions. Appl. Phys. Lett. 2007, 90, 143107.
21. Kim, H.-S., J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins and B. Dunn Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO 3− x. Nature materials 2017, 16, 454-460.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *