|
1. Wang, J., N. Du, H. Zhang, J. Yu and D. Yang Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. J. Mater. Chem. C 2012, 22, 1511-1515. 2. Buqa, H., D. Goers, M. Holzapfel, M. E. Spahr and P. Novák High rate capability of graphite negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A474. 3. Li, Y., B. Tan and Y. Wu Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265-270. 4. Gong, X., Y. Zheng, J. Zheng, S. Cao, H. Wen, B. Lin and Y. Sun Surface‐Functionalized Graphite as Long Cycle Life Anode Materials for Lithium‐ion Batteries. ChemElectroChem 2020. 5. Daniel, T., J. Henry, K. Mohanraj and G. Sivakumar AgSbS2 and Ag3SbS3 absorber materials for photovoltaic applications. Mater. Chem. Phys. 2016, 181, 415-421. 6. Yang, W.-C. and M.-W. Lee Enhanced photovoltaic performance in AgSbS2 liquid-junction semiconductor-sensitized solar cells. J. Electrochem. Soc. 2013, 161, H92. 7. Zhang, Z., Y. Fu, C. Zhou and Y. Lai Facile synthesis of CuSbS 2 blocks, and their lithium ion storage performance. J. Electron. Mater. 2015, 44, 252-257. 8. Tang, Q., H. Su, Y. Cui, A. P. Baker, Y. Liu, J. Lu, X. Song, H. Zhang, J. Wu and H. Yu Ternary tin-based chalcogenide nanoplates as a promising anode material for lithium-ion batteries. J. Power Sources 2018, 379, 182-190. 9. Abbasnezhad, A., H. Asgharzadeh, A. A. Hamedani and S. H. Soytas One-pot synthesis of tin chalcogenide-reduced graphene oxide-carbon nanotube nanocomposite as anode material for lithium-ion batteries. Dalton Trans. 2020, 49, 5890-5897. 10. Jia, N., M. Zhang, B. Li, C. Li, Y. Liu, Y. Zhang, T. Yu, Y. Liu, D. Cui and X. Tao Ternary chalcogenide LiInSe2: A promising high-performance anode material for lithium ion batteries. Electrochim. Acta 2019, 320, 134562. 11. Chen, D., G. Ji, B. Ding, Y. Ma, B. Qu, W. Chen and J. Y. Lee Double transition-metal chalcogenide as a high-performance lithium-ion battery anode material. Ind. Eng. Chem. Res. 2014, 53, 17901-17908. 12. Choi, H., S. Kim, J. M. Luther, S.-W. Kim, D. Shin, M. C. Beard and S. Jeong Facet-specific ligand interactions on ternary AgSbS2 colloidal quantum dots. Chem. Eur. J. 2017, 23. 13. Saksornchai, E. and J. Kavinchan (2018). Its Optical Property and Characterization of Silver Antimony Sulfide Nanostructured Clusters Synthesized Using a Facile Wet Chemical Route. Materials Science Forum, Trans Tech Publ. 14. Zhou, B., M. Li, Y. Wu, C. Yang, W. H. Zhang and C. Li Monodisperse AgSbS2 Nanocrystals: Size‐Control Strategy, Large‐Scale Synthesis, and Photoelectrochemistry. Chem. Eur. J. 2015, 21, 11143-11151. 15. Han, M., J. Jia and W. Wang Facile synthesis of stoichiometric AgSbS2 silk-like nanoflowers for solar energy conversion. Mater. Lett. 2016, 179, 130-133. 16. Tipcompor, N., S. Thongtem and T. Thongtem Characterization of cubic AgSbS2 nanostructured flowers synthesized by microwave-assisted refluxing method. J. Nanomater. 2013, 2013. 17. Gutwirth, J., T. Wagner, P. Němec, S. Kasap and M. Frumar Thermal and optical properties of AgSbS2 thin films prepared by pulsed laser deposition (PLD). J Non Cryst Solids 2008, 354, 497-502. 18. Yu, L., M. Han, Y. Wan, J. Jia and G. Yi Synthesis of stoichiometric AgSbS2 nanospheres via one-step solvothermal chemical process. Mater. Lett. 2015, 161, 447-450. 19. Kavinchan, J., S. Thongtem, E. Saksornchai and T. Thongtem CRYSTAL GROWTH OF AgSbS2 (MIARGYRITE) NANOSTRUCTURE BY CYCLIC MICROWAVE RADIATION. Chalcogenide Lett. 2015, 12, 325-331. 20. Wang, Q., R. Gao and J. Li Porous, self-supported Ni 3 S 2∕ Ni nanoarchitectured electrode operating through efficient lithium-driven conversion reactions. Appl. Phys. Lett. 2007, 90, 143107. 21. Kim, H.-S., J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins and B. Dunn Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO 3− x. Nature materials 2017, 16, 454-460.
|