帳號:guest(3.145.152.226)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張晴淵
作者(外文):Chang, Ching-Yuan
論文名稱(中文):開發複合式固體觸媒作為永續性環化反應製程之應用
論文名稱(外文):Sustainable Cyclization Reactions Using Composite Solid Catalysts
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員(中文):潘詠庭
呂世源
李岱洲
口試委員(外文):Pan, Yung-Tin
Lu, Shih-Yuan
Lee, Tai-Chou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:109032537
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:85
中文關鍵詞:固體鹼觸媒縮水甘油三氯丙二醇環化碳酸丙烯酯二氧化鈰
外文關鍵詞:Solid-base catalystGlycidol3-chloro-1,2-propanediolCyclizationPropylene carbonateCeria
相關次數:
  • 推薦推薦:0
  • 點閱點閱:328
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在開發複合式固體觸媒,可作為永續性環化反應製程之應用,來製備有機環化合物。在第一部份中,我們選擇從3-單氯丙二醇(3-MCH)到縮水甘油(GLD)的脫酸環化(Cyclodehydrohalogenation)反應作為研究的代表反應。透過建立合適的合成、鑑定和活性測試平台,研究氧化鈣與氧化鎂的複合式固體鹼觸媒的活性、選擇性和操作穩定性與其材料性能的關係。我們使用X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、比表面積與孔徑分析儀(BET)、化學吸附儀(TPD)與感應耦合電漿發射光譜儀(ICP-OES)來進行觸媒材料性質之相輔式鑑定。結果表示,我們可以成功合成具有可調控式表面鹼度的複合式固體鹼觸媒。液-固反應系統有助於理解固體鹼觸媒催化的3-MCH脫酸環化的反應機理,尤其是副產物的產生途徑和表面中毒引起的觸媒失活。結果表明,3-MCH脫酸環化轉化為GLD的轉化速率與催化劑上中鹼性位點的數量成正比,對GLD的選擇率與催化劑的中等鹼性強度成正比。
在第二部份中,我們運用氧化鈰奈米粉體作為固體觸媒,以催化丙二醇(PG)與二氧化碳(CO2)反應合成出環狀碳酸丙烯酯(PC)。而我們利用高壓反應器(Auto-clave)與通以流動CO2的常壓半批次(Semi-batch)反應器,來研究二氧化鈰觸媒與反應中水分的存在對活性的影響。結果顯示,我們可以在不使用任何脫水劑的情況下使用雙溶劑系統獲得高選擇率(>99.9 %)的碳酸丙烯酯(PC)。藉由勒沙特列原理,透過將水分的移除可提高產物的收率。同時,在沒有溶劑存在下過量觸媒(> 5%)將會促進醚類的催化。
本研究中獲得的實驗結果基礎對於由脫酸環化反應與碳酸酯化反應來生產有機環化合物的複合式固體觸媒提供了有價值的設計原理,並藉由開發複合式固體觸媒之研究作為永續性環化反應製程發展之應用。
In this work, we aim to develop a synthesis, characterization, and performance testing platform for sustainable synthesis of cyclic organic compounds by facile synthesis composite solid catalysts. In the first part, the cyclodehydrohalogenation of 3-monochlorohydrin (3-MCH) to glycidol (GLD) was chosen as the representative of the study. The activity, selectivity, and operation stability of the developed composite catalysts versus their material properties were studied through the establishment of a suitable synthesis, characterization, and performance testing platform. X-ray diffractometer, scanning electron microscope, Brunauer-Emmett-Teller N2 adsorption analyzer, chemisorption analyzer, and inductively coupled plasma optical emission spectrometer are used complementarily for the characterization of catalyst materials. The results show that we can successfully synthesize composite solid base catalysts with adjustable chemical and physical properties, including surface basicity. The liquid-solid reaction system is useful for the mechanistic understanding of the cyclodehydrohalogenation of 3-MCH catalyzed by the solid base catalysts, especially the by-product generation paths and the catalyst deactivation by surface poisoning. The results show that the conversion rate of cyclodehydrohalogenation of 3-MCH to GLD was proportional to the amount of total basic sites on the catalyst, and the selectivity to GLD was proportional to the medium basicity strength of the catalyst.
In the second part, we chose to study the reaction of synthesis cyclic propylene carbonate (PC) from carbon dioxide (CO2) and propylene glycol (PG) catalyzed by CeO2 nanocatalyst as the model study. The activity results were studied through high-pressure auto-clave reactor and CO2 flow semi-batch reactor. The results show we achieved direct synthesis of PC in high selectivity (>99.9%) by dual-solvent system without using dehydrating agents. The product yield increased via the removal of water following the Le Chatelier's principle, by which the hydrolysis of product can be effectively reduced. The formation of ether was promoted due to the excess amount of catalysts without solvent. The fundamental understanding obtained in this study provides valuable design principles for composite solid catalyst for a wide variety of dehydrohalogenation and carbonate-esterification reactions to manufacture organic cyclic compounds.
摘要 I
Abstract II
致謝 IV
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 複合式固體觸媒之製備與應用 3
1.3 由3-單氯丙二醇經由脫酸環化反應生成縮水甘油 5
1.4 由二氧化碳和丙二醇進行反應形成環狀碳酸酯 7
1.5 開發實現環境永續的化工製程 9
第二章 實驗方法及儀器 11
2.1 實驗藥品 11
2.2 固體鹼觸媒製備-共沉澱法與觸媒造粒技術 13
2.3 分析儀器介紹 15
2.3.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 15
2.3.2 X光繞射儀(X-ray diffraction, XRD) 16
2.3.3 比表面積與孔隙度分析儀(Brunauer-Emmett-Teller, BET) 17
2.3.4 感應耦合電漿發射光譜儀(Inductively Coupled Plasma Optical Emission Spectrometry, ICP-OES) 18
2.3.5 熱重分析儀 (Thermogravimetric Analyzer, TGA) 19
2.3.6 化學吸附分析儀 20
2.3.7 氣相層析質譜儀 (Gas Chromatography-Mass Spectrometry, GC-MS) 21
2.3.8 高解析電子能譜儀(High resolution X-ray Photoelectron Spectrometer, HR-XPS) 22
2.4 複合式固體觸媒活性與穩定性測試 23
2.4.1 脫酸環化反應測試系統 23
2.4.2 碳酸酯化反應測試系統 25
2.4.3 產物分析技術 28
第三章 結果與討論 32
3.1 以共沉澱法製備Ca-Mg-Al複合式固體鹼觸媒進行脫酸環化反應 33
3.1.1 材料分析 33
3.1.2 鹼度分析 41
3.1.3 催化活性測試-連續式固定床反應器 44
3.1.4 反應機制探討 46
3.2 運用CeO2粒子作為固體觸媒進行催化丙二醇與CO2反應生成環狀碳酸酯 55
3.2.1 材料分析 55
3.2.2 鹼度分析 59
3.2.3 由丙二醇與CO2生成環狀碳酸丙烯酯之活性測試 61
第四章 結論 72
第五章 未來展望 74
第六章 參考文獻 77
[1] J. Baltrusaitis, Sustainable ammonia production, ACS Publications, 2017.
[2] H. Hattori, Heterogeneous basic catalysis, Chemical Reviews 95(3) (1995) 537-558.
[3] H. Hattori, Solid base catalysts: fundamentals and their applications in organic reactions, Applied Catalysis A: General 504 (2015) 103-109.
[4] M. Kouzu, M. Tsunomori, S. Yamanaka, J. Hidaka, Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel, Advanced Powder Technology 21(4) (2010) 488-494.
[5] Ž. Kesić, I. Lukić, M. Zdujić, L. Mojović, D. Skala, Calcium oxide based catalysts for biodiesel production: a review, Chemical Industry and Chemical Engineering Quarterly 22(4) (2016) 391-408.
[6] J. Di Cosimo, V. Dıez, M. Xu, E. Iglesia, C. Apesteguıa, Structure and surface and catalytic properties of Mg-Al basic oxides, Journal of Catalysis 178(2) (1998) 499-510.
[7] R. Si, M. Flytzani‐Stephanopoulos, Shape and crystal‐plane effects of nanoscale ceria on the activity of Au‐CeO2 catalysts for the water–gas shift reaction, Angewandte Chemie 120(15) (2008) 2926-2929.
[8] A. Karakoti, S. Singh, J.M. Dowding, S. Seal, W.T. Self, Redox-active radical scavenging nanomaterials, Chemical Society Reviews 39(11) (2010) 4422-4432.
[9] I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Pharmacological potential of cerium oxide nanoparticles, Nanoscale 3(4) (2011) 1411-1420.
[10] S. Patil, S. Seal, Y. Guo, A. Schulte, J. Norwood, Role of trivalent La and Nd dopants in lattice distortion and oxygen vacancy generation in cerium oxide nanoparticles, Applied Physics Letters 88(24) (2006) 243110.
[11] D.-H. Tsai, T.-J. Huang, Activity behavior of samaria-doped ceria-supported copper oxide catalyst and effect of heat treatments of support on carbon monoxide oxidation, Applied Catalysis A: General 223(1-2) (2002) 1-9.
[12] J. Wang, K. Kusumoto, K. Nezu, Application of neural networks to modeling cut surface quality for plasma arc cutting, Quarterly Journal of the Japan Welding Society 18(2) (2000) 191-197.
[13] M. Stojmenović, M. Žunić, J. Gulicovski, D. Bajuk-Bogdanović, I. Holclajtner-Antunović, V. Dodevski, S. Mentus, Structural, morphological, and electrical properties of doped ceria as a solid electrolyte for intermediate-temperature solid oxide fuel cells, Journal of Materials Science 50(10) (2015) 3781-3794.
[14] G. Dell’Agli, L. Spiridigliozzi, A. Marocco, G. Accardo, D. Frattini, Y. Kwon, S. Yoon, Morphological and crystalline evolution of Sm-(20 mol%)–doped ceria nanopowders prepared by a combined co-precipitation/hydrothermal synthesis for solid oxide fuel cell applications, Ceramics International 43(15) (2017) 12799-12808.
[15] S. Wang, L. Zhao, W. Wang, Y. Zhao, G. Zhang, X. Ma, J. Gong, Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol, Nanoscale 5(12) (2013) 5582-5588.
[16] J. Al-Darwish, M. Senter, S. Lawson, F. Rezaei, A.A. Rownaghi, Ceria nanostructured catalysts for conversion of methanol and carbon dioxide to dimethyl carbonate, Catalysis Today 350 (2020) 120-126.
[17] P. Kumar, P. With, V.C. Srivastava, R. Gläser, I.M. Mishra, Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: characterization, catalytic activity and thermodynamic study, Journal of Alloys and Compounds 696 (2017) 718-726.
[18] S.-P. Wang, J.-J. Zhou, S.-Y. Zhao, Y.-J. Zhao, X.-B. Ma, Enhancements of dimethyl carbonate synthesis from methanol and carbon dioxide: The in situ hydrolysis of 2-cyanopyridine and crystal face effect of ceria, Chinese Chemical Letters 26(9) (2015) 1096-1100.
[19] K.P. de Jong, Synthesis of solid catalysts, John Wiley & Sons2009.
[20] G. Ertl, H. Knözinger, J. Weitkamp, Preparation of solid catalysts, John Wiley & Sons2008.
[21] R. Salomao, L. Milena, M. Wakamatsu, V.C. Pandolfelli, Hydrotalcite synthesis via co-precipitation reactions using MgO and Al(OH)3 precursors, Ceramics International 37(8) (2011) 3063-3070.
[22] N. Deraz, The comparative jurisprudence of catalysts preparation methods: I. Precipitation and impregnation methods, J. Ind. Environ. Chem 2(1) (2018) 19-21.
[23] A. Milewski, D. Czechowicz, A. Jakóbik-Kolon, P. Dydo, Preparation of glycidol via dehydrohalogenation of 3-Chloro-1,2-popanediol using bipolar membrane electrodialysis, ACS Sustainable Chemistry & Engineering 7(22) (2019) 18640-18646.
[24] D. Sajkowski, M. Boudart, Structure sensitivity of the catalytic oxidation of ethene by silver, Catalysis Reviews Science and Engineering 29(4) (1987) 325-360.
[25] Y. Liu, J. Zhao, Y. Peng, J. Luo, L. Cao, X. Liu, Comparative Study on the Properties of Epoxy Derived from Aromatic and Heteroaromatic Compounds: The Role of Hydrogen Bonding, Industrial & Engineering Chemistry Research 59(5) (2020) 1914-1924.
[26] A.H. Chowdhury, I.H. Chowdhury, S.M. Islam, Titanium Phosphate with Flower-like Morphology As an Effective Reusable Catalyst for Chemical Fixation of CO2 at Mild Reaction Conditions, Industrial & Engineering Chemistry Research 58(27) (2019) 11779-11786.
[27] J. Ren, L. Wang, P. Li, X. Xing, H. Wang, B. Lv, Ag supported on alumina for the epoxidation of 1-hexene with molecular oxygen: the effect of Ag+/Ag0, New Journal of Chemistry 46(10) (2022) 4792-4799.
[28] E. Milchert, A. Krzyżanowska, A. Wołosiak-Hnat, W. Paździoch, The influence of technological parameters on dehydrochlorination of dichloropropanols, Industrial and Engineering Chemistry Research 51(9) (2012) 3575-3579.
[29] D. Cespi, R. Cucciniello, M. Ricciardi, C. Capacchione, I. Vassura, F. Passarini, A. Proto, A simplified early stage assessment of process intensification: glycidol as a value-added product from epichlorohydrin industry wastes, Green Chemistry 18(16) (2016) 4559-4570.
[30] Y. Lu, T. Li, R. Wang, G. Luo, Synthesis of epichlorohydrin from 1,3-dichloropropanol using solid base, Chinese Journal of Chemical Engineering 25(3) (2017) 301-305.
[31] C. Shang, Z. Wu, W.D. Wu, X.D. Chen, Combination of spray drying encapsulation and steaming transformation toward robust hierarchical zeolite microspheres: synthesis, formation mechanism and acid catalysis, Chemical Engineering Science 229 (2021) 116080.
[32] Y. Li, X. Zhang, C. Shang, X. Wei, L. Wu, X. Wang, W.D. Wu, X.D. Chen, C. Selomulya, D. Zhao, Scalable synthesis of uniform mesoporous aluminosilicate microspheres with controllable size and morphology and high hydrothermal stability for efficient acid catalysis, ACS Applied Materials & Interfaces 12(19) (2020) 21922-21935.
[33] H.c. Hernando, B.a. Puértolas, P. Pizarro, J. Fermoso, J. Pérez-Ramírez, D.P. Serrano, Cascade deoxygenation process integrating acid and base catalysts for the efficient production of second-generation biofuels, ACS Sustainable Chemistry & Engineering 7(21) (2019) 18027-18037.
[34] M. Al‐Naji, B. Puértolas, B. Kumru, D. Cruz, M. Bäumel, B.V. Schmidt, N.V. Tarakina, J. Pérez‐Ramírez, Sustainable continuous flow valorization of γ‐Valerolactone with trioxane to α‐Methylene‐γ‐Valerolactone over basic beta zeolites, ChemSusChem 12(12) (2019) 2628-2636.
[35] G. Jia, B. He, Y. Li, L. Liu, J. Zhao, B. Lv, Thermodynamic equilibrium analysis on the dehydration of glycerol with monohydric alcohols to alkyl glyceryl ethers, AIChE Journal e17610.
[36] G. Jia, Y. Zhang, L. Liu, Y. Li, B. Lv, Gas-phase catalytic dehydration of glycerol with methanol to methyl glyceryl ethers over phosphotungstic acid supported on alumina, ACS Omega 6(44) (2021) 29370-29379.
[37] S.C. D’Angelo, A. Dall’Ara, C. Mondelli, J. Perez-Ramirez, S. Papadokonstantakis, Techno-economic analysis of a glycerol biorefinery, ACS Sustainable Chemistry & Engineering 6(12) (2018) 16563-16572.
[38] S. Sahani, S.N. Upadhyay, Y.C. Sharma, Critical review on production of glycerol carbonate from byproduct glycerol through transesterification, Industrial & Engineering Chemistry Research 60(1) (2020) 67-88.
[39] P. Kumar, A.K. Shah, J.-H. Lee, Y.H. Park, U.k.L.i. Štangar, Selective hydrogenolysis of glycerol over bifunctional copper–magnesium-supported catalysts for propanediol synthesis, Industrial & Engineering Chemistry Research 59(14) (2020) 6506-6516.
[40] S.E. Kondawar, C.R. Patil, C.V. Rode, Tandem synthesis of glycidol via transesterification of glycerol with DMC over Ba-mixed metal oxide catalysts, ACS Sustainable Chemistry & Engineering 5(2) (2017) 1763-1774.
[41] A. Kostyniuk, D. Bajec, P. Djinović, B. Likozar, One-step synthesis of glycidol from glycerol in a gas-phase packed-bed continuous flow reactor over HZSM-5 zeolite catalysts modified by CsNO3, Chemical Engineering Journal 394 (2020) 124945.
[42] R. Morodo, R. Gérardy, G. Petit, J.-C.M. Monbaliu, Continuous flow upgrading of glycerol toward oxiranes and active pharmaceutical ingredients thereof, Green Chemistry 21(16) (2019) 4422-4433.
[43] G. Dmitriev, L. Zanaveskin, Synthesis of epichlorohydrin from glycerol. Hydrochlorination of glycerol, Chem. Eng. Trans 24 (2011) 43-48.
[44] Y.-S. Chen, C.-M. Yang, T.T. Nguyen Hoang, D.-H. Tsai, Porous magnesia-alumina composite nanoparticle for biodiesel production, Fuel 285 (2021) 119203.
[45] C.-M. Yang, M.V. Huynh, T.-Y. Liang, T.K. Le, T.K.X. Huynh, S.-Y. Lu, D.-H. Tsai, Metal-organic framework-derived Mg-Zn hybrid nanocatalyst for biodiesel production, Advanced Powder Technology 33(1) (2021) 103365.
[46] H.-Y. Chang, G.-H. Lai, C.-Y. Lin, C.-Y. Lee, C.-C. Chia, C.-L. Hwang, H.-M. Chang, D.-H. Tsai, Reductive amination of polypropylene glycol using Ni-CeO2@ Al2O3 with high activity, selectivity and stability, Catalysis Communications 127 (2019) 15-19.
[47] L. Si, B. Wang, S. Chen, J. Hou, X. Yan, Y. Li, L. Chen, Catalytic hydrogenation of 2-nitro-2'-hydroxy-5'-methylazobenzene over solid base-hydrogenation bifunctional catalysts: Effect of alkali metals on Pd/γ-Al2O3, Catalysis Communications 90 (2017) 35-38.
[48] H.H. Mardhiah, H.C. Ong, H. Masjuki, S. Lim, H. Lee, A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils, Renewable and Sustainable Energy Reviews 67 (2017) 1225-1236.
[49] A.M. Hernández‐Giménez, L.M. de Kort, G.T. Whiting, H. Hernando, B. Puértolas, J. Pérez‐Ramírez, D.P. Serrano, P.C. Bruijnincx, B.M. Weckhuysen, Upscaling effects on alkali metal‐grafted ultrastable Y zeolite extrudates for modeled catalytic deoxygenation of bio‐oils, ChemCatChem 13(8) (2021) 1951-1965.
[50] H.-L. Chiang, Y.-S. Chen, Y.-A. Sun, D.S.-H. Wong, D.-H. Tsai, Aerosol Spray Controlled Synthesis of Nanocatalyst using Differential Mobility Analysis Coupled to Fourier-Transform Infrared Spectroscopy, Industrial & Engineering Chemistry Research 59(24) (2020) 11187-11195.
[51] M. Marinković, H. Waisi, S. Blagojević, A. Zarubica, R. Ljupković, A. Krstić, B. Janković, The effect of process parameters and catalyst support preparation methods on the catalytic efficiency in transesterification of sunflower oil over heterogeneous KI/Al2O3-based catalysts for biodiesel production, Fuel 315 (2022) 123246.
[52] Z.-E. Tang, S. Lim, Y.-L. Pang, H.-C. Ong, K.-T. Lee, Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review, Renewable and Sustainable Energy Reviews 92 (2018) 235-253.
[53] S. Lim, C.Y. Yap, Y.L. Pang, K.H. Wong, Biodiesel synthesis from oil palm empty fruit bunch biochar derived heterogeneous solid catalyst using 4-benzenediazonium sulfonate, Journal of Hazardous materials 390 (2020) 121532.
[54] A. Bansode, A. Urakawa, Continuous DMC synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent, ACS Catalysis 4(11) (2014) 3877-3880.
[55] M. Tamura, M. Honda, Y. Nakagawa, K. Tomishige, Direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts, Journal of Chemical Technology & Biotechnology 89(1) (2014) 19-33.
[56] J. Sun, S.-i. Fujita, M. Arai, Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids, Journal of Organometallic Chemistry 690(15) (2005) 3490-3497.
[57] L.F. Souza, P.R. Ferreira, J.L. de Medeiros, R.M. Alves, O.l.Q. Araújo, Production of DMC from CO2 via indirect route: technical–economical–environmental assessment and analysis, ACS Sustainable Chemistry & Engineering 2(1) (2014) 62-69.
[58] E.J. Lopes, A.P. Ribeiro, L.M. Martins, New trends in the conversion of CO2 to cyclic carbonates, Catalysts 10(5) (2020) 479.
[59] A. Brege, B. Grignard, R. Méreau, C. Detrembleur, C. Jerome, T. Tassaing, En Route to CO2-Based (a) Cyclic Carbonates and Polycarbonates from Alcohols Substrates by Direct and Indirect Approaches, Catalysts 12(2) (2022) 124.
[60] L.-F. Xiao, Q.-F. Yue, C.-G. Xia, L.-W. Xu, Supported basic ionic liquid: Highly effective catalyst for the synthesis of 1, 2-propylene glycol from hydrolysis of propylene carbonate, Journal of Molecular Catalysis A: Chemical 279(2) (2008) 230-234.
[61] J.P. Parrish, R.N. Salvatore, K.W. Jung, Perspectives on alkyl carbonates in organic synthesis, Tetrahedron 56(42) (2000) 8207-8238.
[62] W.S. Putro, A. Ikeda, S. Shigeyasu, S. Hamura, S. Matsumoto, V.Y. Lee, J.C. Choi, N. Fukaya, Sustainable catalytic synthesis of diethyl carbonate, ChemSusChem 14(3) (2021) 842-846.
[63] A. Dibenedetto, M. Aresta, A. Angelini, J. Ethiraj, B.M. Aresta, Synthesis, Characterization, and Use of NbV/CeIV‐Mixed Oxides in the Direct Carboxylation of Ethanol by using Pervaporation Membranes for Water Removal, Chemistry–A European Journal 18(33) (2012) 10324-10334.
[64] C.-F. Li, S.-H. Zhong, Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu–KF/MgSiO catalyst, Catalysis Today 82(1-4) (2003) 83-90.
[65] B. Fan, H. Li, W. Fan, J. Zhang, R. Li, Organotin compounds immobilized on mesoporous silicas as heterogeneous catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide, Applied Catalysis A: General 372(1) (2010) 94-102.
[66] Y. Gu, M. Tamura, Y. Nakagawa, K. Nakao, K. Suzuki, K. Tomishige, Direct synthesis of polycarbonate diols from atmospheric flow CO2 and diols without using dehydrating agents, Green Chemistry 23(16) (2021) 5786-5796.
[67] M. Honda, M. Tamura, Y. Nakagawa, K. Nakao, K. Suzuki, K. Tomishige, Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies, Journal of Catalysis 318 (2014) 95-107.
[68] T. Sakakura, J.-C. Choi, Y. Saito, T. Masuda, T. Sako, T. Oriyama, Metal-catalyzed dimethyl carbonate synthesis from carbon dioxide and acetals, The Journal of Organic Chemistry 64(12) (1999) 4506-4508.
[69] S. Fang, K. Fujimoto, Direct synthesis of dimethyl carbonate from carbon dioxide and methanol catalyzed by base, Applied Catalysis A: General 142(1) (1996) L1-L3.
[70] Y. Li, L. Li, J. Yu, Applications of zeolites in sustainable chemistry, Chem 3(6) (2017) 928-949.
[71] I.T. Horváth, Introduction: sustainable chemistry, ACS Publications, 2018, pp. 369-371.
[72] T. Collins, Toward sustainable chemistry, Science 291(5501) (2001) 48-49.
[73] T.T.N. Hoang, Y.-S. Lin, T.N.H. Le, T.K. Le, T.K.X. Huynh, D.-H. Tsai, Cu-ZnO@ Al2O3 hybrid nanoparticle with enhanced activity for catalytic CO2 conversion to methanol, Advanced Powder Technology 32(5) (2021) 1785-1792.
[74] F. Zhang, S.-W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Cerium oxide nanoparticles: size-selective formation and structure analysis, Applied Physics Letters 80(1) (2002) 127-129.
[75] M. Khachani, A. El Hamidi, M. Halim, S. Arsalane, Non-isothermal kinetic and thermodynamic studies of the dehydroxylation process of synthetic calcium hydroxide Ca(OH)2, J. Mater. Environ. Sci 5(2) (2014) 615-624.
[76] I. Bhattacharya, S. Das, P. Mukherjee, S. Paul, P. Mitra, Thermal decomposition of precipitated fine aluminium trihydroxide, Scandinavian Journal of Metallurgy 33(4) (2004) 211-219.
[77] G.M. Lari, A.B. de Moura, L. Weimann, S. Mitchell, C. Mondelli, J. Pérez-Ramírez, Design of a technical Mg–Al mixed oxide catalyst for the continuous manufacture of glycerol carbonate, Journal of Materials Chemistry A 5(31) (2017) 16200-16211.
[78] G. Varga, Z. Somosi, Z. Kónya, Á. Kukovecz, I. Pálinkó, I. Szilagyi, A colloid chemistry route for the preparation of hierarchically ordered mesoporous layered double hydroxides using surfactants as sacrificial templates, Journal of Colloid and Interface Science 581 (2021) 928-938.
[79] A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, EXPO2013: a kit of tools for phasing crystal structures from powder data, Journal of Applied Crystallography 46(4) (2013) 1231-1235.
[80] U.T. Bornscheuer, M. Hesseler, Enzymatic removal of 3‐monochloro‐1,2‐propanediol (3‐MCPD) and its esters from oils, European Journal of Lipid Science and Technology 112(5) (2010) 552-556.
[81] J.L. Burdett, M.T. Rogers, Keto-enol tautomerism in β-dicarbonyls studied by nuclear magnetic resonance spectroscopy. 1 I. Proton chemical shifts and equilibrium constants of pure compounds, Journal of the American Chemical Society 86(11) (1964) 2105-2109.
[82] G.M. Lari, G. Pastore, C. Mondelli, J. Pérez-Ramírez, Towards sustainable manufacture of epichlorohydrin from glycerol using hydrotalcite-derived basic oxides, Green Chemistry 20(1) (2018) 148-159.
[83] I.V. Zagaynov, S.V. Fedorov, A.A. Konovalov, O.S. Antonova, Perspective ceria-based solid solutions GdxBi0.2− xCe0.8O2, Materials Letters 203 (2017) 9-12.
[84] D. He, H. Hao, D. Chen, J. Liu, J. Yu, J. Lu, F. Liu, G. Wan, S. He, Y. Luo, Synthesis and application of rare-earth elements (Gd, Sm, and Nd) doped ceria-based solid solutions for methyl mercaptan catalytic decomposition, Catalysis Today 281 (2017) 559-565.
[85] X. Yang, Y. Liu, J. Li, Y. Zhang, Effects of calcination temperature on morphology and structure of CeO2 nanofibers and their photocatalytic activity, Materials Letters 241 (2019) 76-79.
[86] K. Kuntaiah, P. Sudarsanam, B.M. Reddy, A. Vinu, Nanocrystalline Ce1−xSmxO2− δ (x=0.4) solid solutions: structural characterization versus CO oxidation, RSC Advances 3(21) (2013) 7953-7962.
[87] A. Tok, S. Du, F. Boey, W. Chong, Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles, Materials Science and Engineering: A 466(1-2) (2007) 223-229.
[88] D. Schweke, S. Zalkind, S. Attia, J. Bloch, The interaction of CO2 with CeO2 powder explored by correlating adsorption and thermal desorption analyses, The Journal of Physical Chemistry C 122(18) (2018) 9947-9957.
[89] Z.-J. Gong, Y.-R. Li, H.-L. Wu, S.D. Lin, W.-Y. Yu, Direct copolymerization of carbon dioxide and 1, 4-butanediol enhanced by ceria nanorod catalyst, Applied Catalysis B: Environmental 265 (2020) 118524.
[90] B. Liu, C. Li, G. Zhang, X. Yao, S.S. Chuang, Z. Li, Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods, ACS Catalysis 8(11) (2018) 10446-10456.
[91] S.-y. HUANG, S.-g. LIU, J.-p. LI, Z. Ning, W. Wei, Y.-h. SUN, Synthesis of cyclic carbonate from carbon dioxide and diols over metal acetates, Journal of Fuel Chemistry and Technology 35(6) (2007) 701-705.
[92] K. Tomishige, H. Yasuda, Y. Yoshida, M. Nurunnabi, B. Li, K. Kunimori, Novel route to propylene carbonate: selective synthesis from propylene glycol and carbon dioxide, Catalysis Letters 95(1) (2004) 45-49.
[93] K. Tomishige, Y. Gu, Y. Nakagawa, M. Tamura, Reaction of CO2 with alcohols to linear-, cyclic-, and poly-carbonates using CeO2-based catalysts, Frontiers in Energy Research (2020) 117.
[94] K. Koh, A.G. Wong-Foy, A.J. Matzger, MOF@MOF: microporous core–shell architectures, Chemical Communications (41) (2009) 6162-6164.
[95] A. Asghar, N. Iqbal, T. Noor, Ultrasonication treatment enhances MOF surface area and gas uptake capacity, Polyhedron 181 (2020) 114463.
[96] J. Kim, D.O. Kim, D.W. Kim, K. Sagong, Synthesis of MOF having hydroxyl functional side groups and optimization of activation process for the maximization of its BET surface area, Journal of Solid State Chemistry 197 (2013) 261-265.
[97] U. Jamil, A.H. Khoja, R. Liaquat, S.R. Naqvi, W.N.N.W. Omar, N.A.S. Amin, Copper and calcium-based metal organic framework (MOF) catalyst for biodiesel production from waste cooking oil: A process optimization study, Energy Conversion and Management 215 (2020) 112934.
[98] X. Ding, X. Dong, D. Kuang, S. Wang, X. Zhao, Y. Wang, Highly efficient catalyst PdCl2–CuCl2–KOAc/AC@Al2O3 for gas-phase oxidative carbonylation of methanol to dimethyl carbonate: Preparation and reaction mechanism, Chemical Engineering Journal 240 (2014) 221-227.
[99] S. Huang, B. Yan, S. Wang, X. Ma, Recent advances in dialkyl carbonates synthesis
and applications, Chemical Society Reviews 44(10) (2015) 3079-3116.
[100] K. Tomishige, T. Sakaihori, S.-i. Sakai, K. Fujimoto, Dimethyl carbonate synthesis
by oxidative carbonylation on activated carbon supported CuCl2 catalysts: catalytic
properties and structural change, Applied Catalysis A: General 181(1) (1999) 95-102.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *