|
[1] Terrence J. Sejnowski. The unreasonable effectiveness of deep learning in artificial intelligence. PNAS, 117:30033— -30038, 2020 [2] Qin, T.; Wu, K.; Xiu, D. Data Driven Governing Equations Approximation Using Deep Neural Networks. J. Comput. Phys. 2019, 395, 620–635. [3] Long, Z.; Lu, Y.; Ma, X.; Dong, B. PDE-Net: Learning PDEs from Data. arXiv Prepr. arXiv1710.09668 2017. [4] McCulloch, W.S., Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115-133(1943). [5] 許恆修(2019, Jun) Medium 何謂 Artificial Neural Network? - Retrieved July, 2022, from https://r23456999.medium.com/%E4%BD%95%E8%AC%82-artificial-neural-netwrok-33c546c94794 [6] Y.LeCun, L.Bottou, Y.Bengio, P.Haffner, (1998) Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86, 2278-2324. [7] V.Nair, G.E.Hinton, (2010), Rectified linear units improve restricted boltzmann machines, In ICML. [8] J.Han, C.Moraga, (1995) The influence of the sigmoid function parameters on the speed of backpropagation learning, In International Workshop on Artificial Neural Networks, 195-201. [9] D.P.Kingma, J.Ba, (2014) Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980. [10] Montavon, G., Samek, W., & Müller, K. R. (2018). Methods for interpreting and understanding deep neural networks. Digital signal processing, 73, 1-15. [11] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4), 303-314 [12] Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017, August). Understanding of a convolutional neural network. In 2017 international conference on engineering and technology (ICET) (pp. 1-6). Ieee. [13] Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent neural network training. Computer Science Review, 3(3), 127-149. [14] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27. [15] Massimo Merenda(2020, April) ResearchGate - Edge Machine Learning for AI-Enabled IoT Devices: A Review - Retrieved July, 2022, from https://www.researchgate.net/figure/Deep-Neural-Network-DNN-example_fig2_341037496 [16] Tommy Huang(2018, May) Medium 卷積神經網路(Convolutional neural network, CNN) - Retrieved July, 2022, from https://chih-sheng-huang821.medium.com/%E5%8D%B7%E7%A9%8D%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF-convolutional-neural-network-cnn-cnn%E9%81%8B%E7%AE%97%E6%B5%81%E7%A8%8B-ecaec240a631 [17] Weijiang Feng(2017, May) ResearchGate - Audio visual speech recognition with multimodal recurrent neural networks - Retrieved July, 2022, from https://www.researchgate.net/figure/The-standard-RNN-and-unfolded-RNN_fig1_318332317 [18] Soohwan Kim(2021, Jan) Github software/seq2seq:PyTorch implementation of the RNN-basd sequence-to-sequence architecture - Retrieved July, 2022, from https://github.com/sooftware/seq2seq [19] Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential equations. The Journal of Machine Learning Research, 19(1), 932-955. [20] Chen, D., Gao, X., Xu, C., Wang, S., Chen, S., Fang, J., & Wang, Z. (2022). FlowDNN: a physics-informed deep neural network for fast and accurate flow prediction. Frontiers of Information Technology & Electronic Engineering, 23(2), 207-219. [21] Chen, M., Lupoiu, R., Mao, C., Huang, D. H., Jiang, J., Lalanne, P., & Fan, J. (2021). Physics-augmented deep learning for high-speed electromagnetic simulation and optimization. [22] Yang, L., Meng, X., & Karniadakis, G. E. (2021). B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data. Journal of Computational Physics, 425, 109913. [23] Lu, L., Jin, P., & Karniadakis, G. E. (2019). Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193. [24] Gay, D. H., & Ray, W. H. (1995). Identification and control of distributed parameter systems by means of the singular value decomposition. Chemical Engineering Science, 50(10), 1519-1539.
|