帳號:guest(18.119.19.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):盧昱璇
作者(外文):Lu, Yu-Hsuan
論文名稱(中文):以界面聚合法製備含米氏酸官能基之高分子複合薄膜應用於有機溶劑奈米過濾
論文名稱(外文):Meldrum’s acid-based Polymeric Thin Film Composite (TFC) Membranes via Interfacial Polymerization for Organic Solvent Nanofiltration
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying-Ling
口試委員(中文):孫一明
胡蒨傑
口試委員(外文):Sun, Yi-Ming
Hu, Chien-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:109032522
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:92
中文關鍵詞:界面聚合法高分子複合薄膜米氏酸官能基有機溶劑奈米過濾
外文關鍵詞:Interfacial polymerizationThin film composite (TFC) membraneMeldrum’s acid-based polymerOrganic Solvent Nanofiltration
相關次數:
  • 推薦推薦:0
  • 點閱點閱:388
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
米氏酸本身特殊的環狀內酯結構容易受到親電子與親核基攻擊,且在熱致開環放出小分子的同時會生成高反應性烯酮基(ketene),使自身發生環加成反應形成交聯結構。本研究即利用傳統界面聚合法製備含米氏酸官能基之聚醯胺(MADA-TMC)複合薄膜,透過米氏酸官能基的特性使聚醯胺選擇層的分子設計具有更多可能性。
為了以熱醯亞胺化的方式製備多孔聚醯亞胺(PI)基材膜,實驗中先以蒸氣誘導式相分離法(Vapor induced phase separation, VIPS)處理聚醯胺酸膜,使表面出現連續且排列平均的孔洞,避免熱環化時表面孔洞坍塌的現象。另外以全反射傅立葉轉換紅外線光譜儀、掃描電子顯微鏡、原子力顯微鏡、水接觸角測量儀等鑑定基材表面,同時也確認界面聚合後MADA-TMC聚醯胺選擇層之形成;接著透過熱處理使米氏酸結構熱開環,其表面選擇層會變得更加均勻且緊密,於Methyl orange(分子量=327 Da)/IPA系統中有93%的阻擋率,可見開環後截留分子量(Molecular weight cut-off)有下降的趨勢,但通量同時也因緻密的結構而有所下降。綜合以上,本研究成功利用VIPS法製備出熱醯亞胺化之PI多孔膜作為基材,並以界面聚合法開發出含米氏酸官能基之高分子複合薄膜,探討米氏酸官能基對複合薄膜性能之影響。
Insoluble polyimides are ideal materials for organic solvent nanofiltration membranes. In this research, PMDA/ODA PI has been developed as a substrate for a thermally stable composite membrane. The PI membrane was prepared by thermal imidization of polyamic acid membrane, which underwent vapor induced phase separation (VIPS) process first to prevent pore collapsing during the high imidization temperature(300°C). Then the polyamide thin-film composite membranes were developed via interfacial polymerization of Meldrum’s acid-based diamine (MADA) and trimesoyl chloride (TMC) on the PI substrates treated with PEG. Furthermore, taking advantages of the reaction diversity of Meldrum’s acid-based polyamide selective layer, the highly reactive ketene groups could carry out self-dimerization to form crosslinked structures after thermal treatment. The higher crosslinking degree after thermal treatment made polyamide selective layer more stable. These composite membranes showed a permeation flux of 0.18 L m− 2 h− 1 bar− 1 with 93% rejection to methyl orange in isopropanol, and also exhibited good mechanical properties and stable performance in organic solvent, which implied the great potential for the separation processes under harsh organic environments. Moreover, Meldrum’s acid-based functional groups could provide more reactive site for the polymer modification, which might expand the application possibilities. 
摘要..............................................I
Abstract.........................................II
總目錄..........................................III
圖目錄............................................V
表目錄.........................................VIII
第一章 緒論.....................................1
1-1薄膜分離技術...................................2
1-2有機溶劑奈米過濾(OSN)分離程序...................6
1-3複合薄膜.......................................9
1-4研究動機......................................15
第二章 文獻回顧.................................16
2-1有機溶劑奈米過濾中的高分子複合薄膜..............18
2-1-1基材材料....................................21
2-1-2多孔膜之製備方式.............................25
2-2以界面聚合法製備高分子複合薄膜..................30
2-2-1添加物對選擇層之影響.........................31
2-2-2單體結構之特性..............................35
2-3研究方法......................................40
第三章 實驗方法.................................42
3-1實驗藥品......................................42
3-2實驗儀器......................................46
3-3實驗步驟......................................49
3-3-1以熱環化法製備聚醯亞胺基材膜..................49
3-3-2合成含有米氏酸官能基之雙胺分子MADA........... 50
3-3-3界面聚合法製備含米氏酸官能基之聚醯胺複合薄膜...51
3-3-4奈米過濾測試................................52
第四章 結果與討論...............................53
4-1基材表面性質鑑定...............................53
4-2高分子複合薄膜.................................57
4-2-1聚醯亞胺基材膜表面親水性改質..................57
4-2-2聚醯胺選擇層之鑑定...........................61
4-2-2-1不同反應時間下複合薄膜表面性質之鑑定.........63
4-2-2-2米氏酸官能基熱致開環對選擇層之影響..........69
4-3 奈米過濾測試.................................73
4-3-1溶劑活化處理之影響...........................73
4-3-2複合薄膜於有機溶劑奈米過濾之表現..............77
4-3-3高分子複合薄膜於OSN中相關文獻結果之比較........80
第五章 結論.....................................83
第六章 參考文獻.................................84
1.Vandezande, P.; Gevers, L. E. M.; Vankelecom, I. F. J. Solvent resistant nanofiltration: separating on a molecular level. Chemical Society Reviews 2008, 37, 365-405.
2.Lin, J. C.& Livingston, A. G. Nanofiltration membrane cascade for continuous solvent exchange. Chemical Engineering Science 2007, 62, 2728-2736.
3.Wang, C.; Park M. J.; Seo D. H.; Drioli, E.; Matsuyama, H.; Shon, H. Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Separation and Purification Technology 2021, 268, 118657-118685.
4.Marchetti, P.; Jimenez Solomon, M. F.; Szekely, G.; Livingston A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews 2014, 114(21), 10735-10806.
5.Li, X.& Li, J. Fluxes and driving forces in membrane separation processes. Encyclopedia of Membranes 2015, 1-3.
6.Rohani, R.; Hyland, M.; Patterson, D. A refined one-filtration method for aqueous based nanofiltration and ultrafiltration membrane molecular weight cut-off determination using polyethylene glycols. Journal of Membrane Science 2011, 382(1), 278-290.
7.Galizia, M.; Bye, K. P. Advances in organic solvent nanofiltration rely on physical chemistry and polymer chemistry. Frontiers in Chemistry 2018, 6, 511-532.
8.Bowen, W. R.& Welfoot, J. S. Modelling of membrane nanofiltration—Pore size distribution effects. Chemical Engineering Science 2002, 57(8), 1393-1407.
9.Ladewig, B. & Al-Shaeli, M. N. Z. Fundamentals of Membrane Bioreactors. (Springer, 2017).
10.Jimenez-Solomon, M. F.; Bhole, Y.; Livingston, A. G. High flux membranes for organic solvent nanofiltration (OSN) — Interfacial polymerization with solvent activation. Journal of Membrane Science 2012, 423–424(15), 371-382.
11.Aburabie, J. New Polymeric Membranes for Organic Solvent Nanofiltration. (KAUST Research Repository, 2017).
12.Baker, R. W. Membrane technology and applications. 3rd Edition, (John Wiley & Sons Ltd., 2012).
13.Thiry, D.; Britun, N.; Konstantinidis, S.; Dauchot, J.-P.; Guillaume, M.; Cornil, J.; Snyders, R. Experimental and theoretical study of the effect of the inductive-to-capacitive transition in propanethiol plasma polymer chemistry. The Journal of Physical Chemistry 2013, 117(19), 9843-9851.
14.Dastan, D.; Panahi, S. L.; Chaure, N. B. Characterization of titania thin films grown by dip-coating technique. Journal of Materials Science: Materials in Electronics 2016, 27, 12291-12296.
15.Yamamoto, M.; Sakata, J.; Hirai, M. Plasma polymerized membranes and gas permeability. I. Journal of Applied Polymer Science 1984, 29(10), 2981-2987.
16.Raaijmakers, M. J. T. & Benes, N. E. Current trends in interfacial polymerization chemistry. Progress in Polymer Science 2016, 63, 86-142.
17.Parka, S.-J.; Choia, W.; Namb, S.-E.; Hong, S.; Lee, J. S.; Lee, J.-H. Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization. Journal of Membrane Science 2017, 526, 52-59.
18.Seah, M. Q.; Lau, W. J.; Goh, P. S.; Tseng, H.-H.; Wahab, R. A.; Ismail, A.F. Progress of interfacial polymerization techniques for polyamide thin film (nano)composite membrane fabrication: a comprehensive review. Polymers (Basel) 2020, 12(12), 2817-2855.
19.Zhao, W.; Liu, H.; Meng, N.; Jian, M.; Wang, H.; Zhang, X. Graphene oxide incorporated thin film nanocomposite membrane at low concentration monomers. Journal of Membrane Science 2018, 565, 380-389.
20.Khorshidi, B.; Bhinder, A.; Thundat, T.; Pernitsky, D.; Sadrzadeh, M. Developing high throughput thin film composite polyamide membranes for forward osmosis treatment of SAGD produced water. Journal of Membrane Science 2016, 511, 29-39.
21.Esmaeili, M.; Mansoorian, S.H.; Gheshlaghi, A.; Rekabdar, F. Performance and morphology evaluation of thin film composite plyacrylonitrile/polyamide nanofiltration membranes considering the reaction time. Journal of Water Chemistry and Technology 2018, 40, 219–227.
22.Chong, C.Y.; Lau, W.J.; Yusof, N.; Lai, G.S.; Othman, N.H.; Matsuura, T.; Ismail, A.F. Studies on the properties of RO membranes for salt and boron removal: Influence of thermal treatment methods and rinsing treatments. Desalination 2018, 428, 218–226.
23.Loeb, S.& Sourirajan, S. Sea Water Demineralization by Means of an Osmotic Membrane. Saline Water Conversion—II 1963, 38, 117–132.
24.Li, Y.; Yang,R.; Zhang, R.; Cao, B.; Li, P. Preparation of thermally imidized polyimide nanofiltration membranes with macrovoid-free structures. Industrial & Engineering Chemistry Research 2020, 59, 14096−14105.
25.Cadotte, J.E.; Petersen, R.J.; Larson, R.E.; Erickson, E.E. A new thin-film composite seawater reverse osmosis membrane. Desalination 1980, 32, 25–31.
26.Bhanushali, D.; Kloos, S.; Kurth, C.; Bhattacharyya, D. Performance of solvent-resistant membranes for non-aqueous systems: Solvent permeation results and modeling. Journal of Membrane Science 2001, 189, 1–21.
27.Valtcheva, I. B.; Kumbharkar, S. C.; Kim, J. F.; Bhole, Y.; Livingston, A. G. Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments. Journal of Membrane Science 2014, 457, 62-72.
28.Sourirajan, S. Separation of hydrocarbon liquids by flow under pressure through porous membranes. Nature 1964, 203, 1348–1349.
29.See Toh, Y. H.; Lim, F. W.; Livingston, A. G. Polymeric membranes for nanofiltration in polar aprotic solvents. Journal of Membrane Science 2007, 301, 3–10.
30.Yang, S.; Zhen, H.; Su, B. Polyimide thin film composite (TFC) membranes via interfacial polymerization on hydrolyzed polyacrylonitrile support for solvent resistant nanofiltration. Royal Society of Chemistry Advances 2017, 7, 42800-42810.
31.Lee, S.; Kang, T.; Lee, J.Y.; Park, J.; Choi, S.H.; Yu, J.-Y.; Ok, S.; Park, S.-H. Thin-film composite nanofiltration membranes for non-polar solvents. Membranes 2021, 11, 184-199.
32.Ba, C. & Economy, J. Preparation of PMDA/ODA polyimide membrane for use as substrate in a thermally stable composite reverse osmosis membrane. Journal of Membrane Science 2010, 363(1-2), 140-148.
33.Siddique, H.; Bhole, Y.; Peeva, L. G.; Livingston, A.G. Pore preserving crosslinkers for polyimide OSN membranes. Journal of Membrane Science 2014, 465, 138-150.
34.Polotsky, A.; Cherkasova, V.; Potokin, I.; Polotskaya, G.; Meleshko, T. Chemically and thermally resistant polyimide ultrafiltration membranes prepared from polyamic acid. Desalination 2006, 200, 341–342.
35.Ohya, H.; Kudryavtsev, V. V.; Semenova, S. I. Polyimide membranes: Applications, fabrications, and properties. (Gordon and Breach, 1996).
36.Mulder, M. Basic principles of membrane technology. (Springer Science & Business Media, 1996).
37.Guillen, G. R.; Pan, Y. J.; Li, M. H.; Hoek, E. M. V. Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Industrial & Engineering Chemistry Research 2011, 50, 3798-3817.
38.Han, M.-J.& Bhattacharyya, D. Changes in morphology and transport characteristics of polysulfone membranes prepared by different demixing conditions. Journal of Membrane Science 1995, 98(3), 191-200.
39.Park, H. C.; Kim, Y. P.; Kim, H. Y.; Kang, Y. S. Membrane formation by water vapor induced phase inversion. Journal of Membrane Science 1999, 156, 169-178.
40.Li, Y.; Xue, J.; Zhang, X.; Cao, B.; Li, P. Formation of macrovoid-free PMDA-MDA polyimide membranes using a gelation/non-solvent-induced phase separation method for organic solvent nanofiltration. Industrial & Engineering Chemistry Research 2019, 58, 6712−6720.
41.Kamada, T.; Ohara, T.; Shintani, T.; Tsuru, T. Controlled surface morphology of polyamide membranes via the addition of co-solvent for improved permeate flux. Journal of Membrane Science 2014, 467, 303-312.
42.Echaide-Górriz, C.; Sorribas, S.; Téllez, C.; Coronas, J. MOF nanoparticles of MIL-68 (Al), MIL-101(Cr) and ZIF-11 for thin film nanocomposite organic solvent nanofiltration membranes, Royal Society of Chemistry Advances 2016, 6, 90417–90426.
43.Kong, C.; Koushima, A.; Kamada, T.; Shintani, T.; Kanezashi, M.; Yoshioka, T.; Tsuru, T. Enhanced performance of inorganic-polyamide nanocomposite membranes prepared by metal-alkoxide-assisted interfacial polymerization. Journal of Membrane Science 2011, 366(1-2), 382-388.
44.Park, S.H.; Kim, Y.J.; Kwon, S.J.; Shin, M.G.; Nam, S.E.; Cho, Y.H.; Park, Y.I.; Kim, J.F.; Lee, J.H. Polyethylene battery separator as a porous support for thin film composite organic solvent nanofiltration membranes. ACS Applied Materials & Interfaces 2018, 10, 44050–44058.
45.Zhou, A.; Li, L.; Li, M.; Chen, Q. Fabrication of poly(amide-co-ester) solvent resistant nanofiltration membrane from P-nitrophenol and trimethyl chloride via interfacial polymerization. Separations 2022, 9, 28-40.
46.Zhou, A.; Shi, C.; He, X.; Fu, Y.; Anjum, A.W.; Zhang, J.; Li, W. Polyarylester nanofiltration membrane prepared from monomers of vanillic alcohol and trimesoyl chloride. Separation and Purification Technology 2017, 193, 58–68.
47.Jimenez-Solomon, M. F.; Song, Q.; Jelfs, K.E.; Munoz-Ibanez, M.; Livingston, A. G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nature Materials 2016, 15, 760-767.
48.Hai, Y.; Zhang, J.; Shi, C.; Zhou, A.; Bian, C.; Li, W. Thin film composite nanofiltration membrane prepared by the interfacial polymerization of 1,2,4,5-benzene tetracarbonyl chloride on the mixed amines cross-linked poly(ether imide) support. Journal of Membrane Science 2016, 520, 19–28.
49.Karan, S.; Jiang, Z.; Livingston, A. G. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 2015, 348, 1347–1351.
50.An, Q.-F.; Ang, M. B. M. Y.; Huang, Y.-H.; Huang, S.-H.; Chia, Y.-H.; Lai, C.-L.; Tsai, H.-A.; Hun, W.-S.; Hu, C.-C.; Wu, Y.-P.; Lee, K.-R. Microstructural characterization and evaluation of pervaporation performance of thin-film composite membranes fabricated through interfacial polymerization on hydrolyzed polyacrylonitrile substrate. Journal of Membrane Science 2019, 583, 31-39.
51.Zhang, Z.; Kang, G.; Yu, H.; Jin, Y.; Cao, Y. From reverse osmosis to nanofiltration: Precise control of the pore size and charge of polyamide membranes via interfacial polymerization. Desalination 2019, 466, 16-23.
52.Fu, W.; Huang, Y.; Deng, L.; Sun, J.; Li, S.-L.; Hu, Y. Ultra-thin microporous membranes based on macrocyclic pillar[n]arene for efficient organic solvent nanofiltration. Journal of membrane science 2022, 655, 120583.
53.Pihlaja, K.; Seilo, M.; Svanholm, U.; Duffield, A.; Balaban, A.; Craig, J. The acidity and general base-catalyzed hydrolysis of Meldrum’s acid and its methyl derivatives. Acta Chemica Scandinavica 1696, 23, 3001-3010.
54.Jung, H.; Leibfarth, F. A.; Woo, S.; Lee, S.; Kang, M.; Moon, B.; Hawker, C. J.; Bang, J. Efficient surface neutralization and enhanced substrate adhesion through ketene mediated crosslinking and functionalization. Advanced Functional Materials 2013, 23(12), 1597-1602.
55.Lui, A.; Talbot, F. D. F.; Matsuura, T.; Sourirajan, S. Studies on the solvent exchange technique for making dry cellulose acetate membranes for the separation of gaseous mixtures. Journal of Applied Polymer Science 1988, 36, 1809-1820.
56.Huang, C.-H. & Liu, Y.-L. Self-polymerization of Meldrum's acid-amine compounds: an effective route to polyamides. Polymer Chemistry 2021, 12(2), 291-298.
57.Sua, P.-K.; Chang C.-H.; Sun, Y.-M.; Hu, C.-C.; Lai, J.-Y.; Liu, Y.-L. Porous membranes of thermosetting polybenzoxazine resins with interconnected-pores for organic solvent microfiltration. Journal of Membrane Science 2019, 586, 267-273.
58.Leibfarth, F. A.; Kang, M.; Ham, M.; Kim, J.; Campos, L. M.; Gupta, N.; Moon, B.; Hawker, C. J. A facile route to ketene-functionalized polymers for general materials applications. Nature Chemistry 2010, 2(3), 207-212.
59.Hansen, C. M. Hansen Solubility Parameters: A User’s Handbook. (CRC Press, 2007).
60.Bolton, D. H.& Wooley, K. L. Hyperbranched aryl polycarbonates derived from A2B monomers versus AB2 monomers. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40(7), 823-835.
61.Kulkarni, A.; Mukherjee, D.; Gill, W. N. Flux enhancement by hydrophilization of thin film composite reverse osmosis membranes. Journal of Membrane Science 1996, 114, 39-50.
62.Freger, V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. Langmuir 2003, 19, 4791-4797.
63.Matthias, M.; Cédric, V.; Marloes, T.; Guy, K.; Vankelecom, I. Crosslinked PVDF-membranes for Solvent Resistant Nanofiltration. Journal of Membrane Science 2018, 566, 223–230.
64.Li, X.; Vandezande, P.; Vankelecom, I. F. J. Polypyrrole modified solvent resistant nanofiltration membranes. Journal of Membrane Science 2008, 320, 143-150.
65.Strużyńska-Piron, I.; Loccufier, J.; Vanmaele, L.; Vankelecom, I. F. J. Synthesis of solvent stable polymeric membranes via UV depth-curing. Chemical Communications 2013, 49, 11494-11496.
66.Shen, J,; Shahid, S.; Sarihan, A.; Patterson, D. A.; Emanuelsson, E. A. C. Effect of polyacid dopants on the performance of polyaniline membranes in organic solvent nanofiltration. Separation and Purification Technology 2018, 204, 336-344.
67.Xing, D. Y.; Chan, S. Y.; Chung, T.-S. The ionic liquid [EMIM]OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration. Green Chemistry 2014, 16, 1383-1392.
68.Darvishmanesh, S.; Jansen, J. C.; Tasselli, F.; Tocci, E.; Luis, P.; Degrève, J.; Drioli, E.; Bruggen, B. V.-D. Novel polyphenylsulfone membrane for potential use in solvent nanofiltration. Journal of Membrane Science 2011, 379, 60-68.
69.Jansen, J. C.; Darvishmanesh, S.; Tasselli, F.; Bazzarelli, F.; Bernardo, P.; Tocci, E.; Friess, K.; Randova, A.; Drioli, E.; Bruggen, B. V.-D. Influence of the blend composition on the properties and separation performance of novel solvent resistant polyphenylsulfone/polyimide nanofiltration membranes. Journal of Membrane Science 2013, 447, 107-118.
70.Kosaraju, P. B.; Sirkar, K. K. Interfacially polymerized thin film composite membranes on microporous polypropylene supports for solvent-resistant nanofiltration. Journal of Membrane Science 2008, 321, 155-161.
71.Sorribas, S.; Gorgojo, P.; Tellez, C.; Coronas, J.; Livingston, A.G. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. Journal of the American Chemical Society 2013, 135, 15201-15208.
72.Vanherck, K.; Aerts, A.; Martens, J.; Vankelecom, I. Hollow filler based mixed matrix membranes. Chemical Communications 2010, 46, 2492-2494.
73.Zhang, Y.; Sun, H.; Sadam, H.; Liu, Y.; Shao, L. Supramolecular chemistry assisted construction of ultra-stable solvent-resistant membranes for angstrom-sized molecular separation. Chemical Engineering Journal 2019, 371, 535-543.
74.Liu, J.; Hua, D.; Zhang, Y.; Japip, S.; Chung, T.-S. Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules. Advanced Materials 2018, 30, 1705933.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *