|
1. Kazim, A. and T.N. Veziroglu, Utilization of solar–hydrogen energy in the UAE to maintain its share in the world energy market for the 21st century. Renewable Energy, 2001. 24(2): p. 259-274.DOI: 10.1016/S0960-1481(00)00199-3.
2. Boyano, A., A.M. Blanco-Marigorta, T. Morosuk, and G. Tsatsaronis, Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy, 2011. 36(4): p. 2202-2214.DOI: 10.1016/j.energy.2010.05.020.
3. Abdul Mujeebu, M., Hydrogen and syngas production by superadiabatic combustion – A review. Applied Energy, 2016. 173: p. 210-224.DOI: 10.1016/j.apenergy.2016.04.018.
4. Kalinci, Y., A. Hepbasli, and I. Dincer, Biomass-based hydrogen production: A review and analysis. International Journal of Hydrogen Energy, 2009. 34(21): p. 8799-8817.DOI: 10.1016/j.ijhydene.2009.08.078.
5. Barbir, F., PEM electrolysis for production of hydrogen from renewable energy sources. Solar Energy, 2005. 78(5): p. 661-669.DOI: 10.1016/j.solener.2004.09.003.
6. Atlam, O. and M. Kolhe, Equivalent electrical model for a proton exchange membrane (PEM) electrolyser. Energy Conversion and Management, 2011. 52(8): p. 2952-2957.DOI: https://doi.org/10.1016/j.enconman.2011.04.007.
7. Sapountzi, F.M., J.M. Gracia, C.J. Weststrate, H.O.A. Fredriksson, and J.W. Niemantsverdriet, Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science, 2017. 58: p. 1-35.DOI: 10.1016/j.pecs.2016.09.001.
8. Aricò, A.S., S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, and V. Antonucci, Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. Journal of Applied Electrochemistry, 2013. 43(2): p. 107-118.DOI: 10.1007/s10800-012-0490-5.
9. Sardar, K., E. Petrucco, C.I. Hiley, J.D.B. Sharman, P.P. Wells, A.E. Russell, R.J. Kashtiban, J. Sloan, and R.I. Walton, Water-Splitting Electrocatalysis in Acid Conditions Using Ruthenate-Iridate Pyrochlores. Angewandte Chemie International Edition, 2014. 53(41): p. 10960-10964.DOI: 10.1002/anie.201406668.
10. Ogawa, T., M. Takeuchi, and Y. Kajikawa, Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research. Sustainability, 2018. 10(2).DOI: 10.3390/su10020478.
11. Siracusano, S., N. Van Dijk, E. Payne-Johnson, V. Baglio, and A.S. Aricò, Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers. Applied Catalysis B: Environmental, 2015. 164: p. 488-495.DOI: 10.1016/j.apcatb.2014.09.005.
12. Cheng, J., H. Zhang, G. Chen, and Y. Zhang, Study of IrxRu1−xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis. Electrochimica Acta, 2009. 54(26): p. 6250-6256.DOI: 10.1016/j.electacta.2009.05.090.
13. Li, G., H. Yu, W. Song, X. Wang, Y. Li, Z. Shao, and B. Yi, Zeolite-templated IrxRu1−xO2 electrocatalysts for oxygen evolution reaction in solid polymer electrolyte water electrolyzers. International Journal of Hydrogen Energy, 2012. 37(22): p. 16786-16794.DOI: 10.1016/j.ijhydene.2012.08.087.
14. Huynh, M., D.K. Bediako, and D.G. Nocera, A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid. Journal of the American Chemical Society, 2014. 136(16): p. 6002-6010.DOI: 10.1021/ja413147e.
15. Huynh, M., C. Shi, S.J.L. Billinge, and D.G. Nocera, Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society, 2015. 137(47): p. 14887-14904.DOI: 10.1021/jacs.5b06382.
16. Frydendal, R., E.A. Paoli, I. Chorkendorff, J. Rossmeisl, and I.E.L. Stephens, Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti-Stabilized MnO2. Advanced Energy Materials, 2015. 5(22): p. 1500991.DOI: 10.1002/aenm.201500991.
17. Suen, N.-T., S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46(2): p. 337-365.DOI: 10.1039/C6CS00328A.
18. Fang, M., D. Guofa, R. Wei, and J. Ho, Hierarchical Nanostructures: Design for Sustainable Water Splitting. Advanced Energy Materials, 2017. 7: p. 1700559.DOI: 10.1002/aenm.201700559.
19. Arbabi, F., Oxygen Bubble Propagation in Polymer Electrolyte Membrane Electrolyzer Porous Transport Layers 2017.
20. Kim, J.-D. and A. Ohira, Water Electrolysis Using a Porous IrO2/Ti/IrO2 Catalyst Electrode and Nafion Membranes at Elevated Temperatures. Membranes, 2021. 11(5).DOI: 10.3390/membranes11050330.
21. Ju, H., S. Badwal, and S. Giddey, A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production. Applied Energy, 2018. 231: p. 502-533.DOI: 10.1016/j.apenergy.2018.09.125.
22. Nikolaidis, P. and A. Poullikkas, A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews, 2017. 67: p. 597-611.DOI: 10.1016/j.rser.2016.09.044.
23. Carmo, M., D.L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934.DOI: 10.1016/j.ijhydene.2013.01.151.
24. Xu, W. and K. Scott, The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance. International Journal of Hydrogen Energy, 2010. 35(21): p. 12029-12037.DOI: 10.1016/j.ijhydene.2010.08.055.
25. Grigoriev, S.A., P. Millet, S.A. Volobuev, and V.N. Fateev, Optimization of porous current collectors for PEM water electrolysers. International Journal of Hydrogen Energy, 2009. 34(11): p. 4968-4973.DOI: 10.1016/j.ijhydene.2008.11.056.
26. Chisholm, G., P.J. Kitson, N.D. Kirkaldy, L.G. Bloor, and L. Cronin, 3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture. Energy & Environmental Science, 2014. 7(9): p. 3026-3032.DOI: 10.1039/C4EE01426J.
27. Rozain, C., E. Mayousse, N. Guillet, and P. Millet, Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I–Pure IrO2-based anodes. Applied Catalysis B: Environmental, 2016. 182: p. 153-160.DOI: 10.1016/j.apcatb.2015.09.013.
28. Yin, L., T. Yang, X. Ding, M. He, W. Wei, T. Yu, and H. Zhao, Synthesis of phosphorus-iridium nanocrystals and their superior electrocatalytic activity for oxygen evolution reaction. Electrochemistry Communications, 2018. 94: p. 59-63.DOI: 10.1016/j.elecom.2018.08.009.
29. Giancola, S., M. Zatoń, Á. Reyes-Carmona, M. Dupont, A. Donnadio, S. Cavaliere, J. Rozière, and D.J. Jones, Composite short side chain PFSA membranes for PEM water electrolysis. Journal of Membrane Science, 2019. 570-571: p. 69-76.DOI: 10.1016/j.memsci.2018.09.063.
30. Siracusano, S., V. Baglio, F. Lufrano, P. Staiti, and A.S. Aricò, Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane. Journal of Membrane Science, 2013. 448: p. 209-214.DOI: 10.1016/j.memsci.2013.07.058.
31. Ramakrishna, S.U.B., D. Srinivasulu Reddy, S. Shiva Kumar, and V. Himabindu, Nitrogen doped CNTs supported Palladium electrocatalyst for hydrogen evolution reaction in PEM water electrolyser. International Journal of Hydrogen Energy, 2016. 41(45): p. 20447-20454.DOI: 10.1016/j.ijhydene.2016.08.195.
32. Shiva Kumar, S., S.U.B. Ramakrishna, B. Rama Devi, and V. Himabindu, Phosphorus-doped graphene supported palladium (Pd/PG) electrocatalyst for the hydrogen evolution reaction in PEM water electrolysis. International Journal of Green Energy, 2018. 15(10): p. 558-567.DOI: 10.1080/15435075.2018.1508468.
33. Morimitsu, M., R. Otogawa, and M. Matsunaga, Effects of cathodizing on the morphology and composition of IrO2/Ta2O5/Ti anodes. Electrochimica Acta, 2000. 46(2): p. 401-406.DOI: 10.1016/S0013-4686(00)00598-3.
34. Hao, C., H. Lv, C. Mi, Y. Song, and J. Ma, Investigation of Mesoporous Niobium-Doped TiO2 as an Oxygen Evolution Catalyst Support in an SPE Water Electrolyzer. ACS Sustainable Chemistry & Engineering, 2016. 4(3): p. 746-756.DOI: 10.1021/acssuschemeng.5b00531.
35. Puthiyapura, V.K., S. Pasupathi, H. Su, X. Liu, B. Pollet, and K. Scott, Investigation of supported IrO2 as electrocatalyst for the oxygen evolution reaction in proton exchange membrane water electrolyser. International Journal of Hydrogen Energy, 2014. 39(5): p. 1905-1913.DOI: 10.1016/j.ijhydene.2013.11.056.
36. Corrales-Sánchez, T., J. Ampurdanés, and A. Urakawa, MoS2-based materials as alternative cathode catalyst for PEM electrolysis. International Journal of Hydrogen Energy, 2014. 39(35): p. 20837-20843.DOI: 10.1016/j.ijhydene.2014.08.078.
37. Giovanni, C.D., Á. Reyes-Carmona, A. Coursier, S. Nowak, J.M. Grenèche, H. Lecoq, L. Mouton, J. Rozière, D. Jones, J. Peron, M. Giraud, and C. Tard, Low-Cost Nanostructured Iron Sulfide Electrocatalysts for PEM Water Electrolysis. ACS Catalysis, 2016. 6(4): p. 2626-2631.DOI: 10.1021/acscatal.5b02443.
38. Wang, J., D. Gao, G. Wang, S. Miao, H. Wu, J. Li, and X. Bao, Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis. Journal of Materials Chemistry A, 2014. 2(47): p. 20067-20074.DOI: 10.1039/C4TA04337E.
39. Mondschein, J.S., J.F. Callejas, C.G. Read, J.Y.C. Chen, C.F. Holder, C.K. Badding, and R.E. Schaak, Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. Chemistry of Materials, 2017. 29(3): p. 950-957.DOI: 10.1021/acs.chemmater.6b02879.
40. Dinh Nguyen, M.T., A. Ranjbari, L. Catala, F. Brisset, P. Millet, and A. Aukauloo, Implementing molecular catalysts for hydrogen production in proton exchange membrane water electrolysers. Coordination Chemistry Reviews, 2012. 256(21): p. 2435-2444.DOI: 10.1016/j.ccr.2012.04.040.
41. Millet, P., R. Ngameni, S.A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, and C. Etiévant, PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052.DOI: 10.1016/j.ijhydene.2009.09.015.
42. Das, R.K.V., S.V.; Pulido, R.M.; Pucher, I.; Turiansky, M.; Rinzler, A.G, A Pt-Free, Activated Carbon Nanotube Cathode, PEM Water Splitting Electrolyzer. 2016. p. 1423. 43. Rodríguez-García, B., Á. Reyes-Carmona, I. Jiménez-Morales, M. Blasco-Ahicart, S. Cavaliere, M. Dupont, D. Jones, J. Rozière, J.R. Galán-Mascarós, and F. Jaouen, Cobalt hexacyanoferrate supported on Sb-doped SnO2 as a non-noble catalyst for oxygen evolution in acidic medium. Sustainable Energy & Fuels, 2018. 2(3): p. 589-597.DOI: 10.1039/C7SE00512A.
44. Lai, Q., V. Vediyappan, K.-F. Aguey-Zinsou, and H. Matsumoto, One-Step Synthesis of Carbon-Protected Co3O4 Nanoparticles toward Long-Term Water Oxidation in Acidic Media. Advanced Energy and Sustainability Research, 2021. 2(11): p. 2100086.DOI: 10.1002/aesr.202100086.
45. Li, A., H. Ooka, N. Bonnet, T. Hayashi, Y. Sun, Q. Jiang, C. Li, H. Han, and R. Nakamura, Stable Potential Windows for Long-Term Electrocatalysis by Manganese Oxides Under Acidic Conditions. Angewandte Chemie International Edition, 2019. 58(15): p. 5054-5058.DOI: 10.1002/anie.201813361.
46. Lim, J.Y., G. Rahman, S.Y. Chae, K.-Y. Lee, C.-S. Kim, and O.-S. Joo, Highly stable RuO2/SnO2 nanocomposites as anode electrocatalysts in a PEM water electrolysis cell. International Journal of Energy Research, 2014. 38(7): p. 875-883.DOI: 10.1002/er.3081.
47. Geiger, S., O. Kasian, A.M. Mingers, K.J.J. Mayrhofer, and S. Cherevko, Stability limits of tin-based electrocatalyst supports. Scientific Reports, 2017. 7(1): p. 4595.DOI: 10.1038/s41598-017-04079-9.
48. Wu, S., S. Yuan, L. Shi, Y. Zhao, and J. Fang, Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals. J Colloid Interface Sci, 2010. 346(1): p. 12-16.DOI: 10.1016/j.jcis.2010.02.031.
49. Wu, S., S. Yuan, L. Shi, Y. Zhao, and J. Fang, Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals. Journal of Colloid and Interface Science, 2010. 346(1): p. 12-16.DOI: 10.1016/j.jcis.2010.02.031.
50. Kim, W.-S., Y. Hwa, H.-C. Kim, J.-H. Choi, H.-J. Sohn, and S.-H. Hong, SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Research, 2014. 7(8): p. 1128-1136.DOI: 10.1007/s12274-014-0475-2.
51. S. Jayashree, R. and P. Vishnu Kamath, Electrochemical synthesis of α-cobalt hydroxide. Journal of Materials Chemistry, 1999. 9(4): p. 961-963.DOI: 10.1039/A807000H.
52. P. Xu, Z. and H. C. Zeng, Thermal evolution of cobalt hydroxides: a comparative study of their various structural phases. Journal of Materials Chemistry, 1998. 8(11): p. 2499-2506.DOI: 10.1039/A804767G.
53. Yim, S.D., S.J. Kim, J.H. Baik, I.S. Nam, Y.S. Mok, J.-H. Lee, B.K. Cho, and S.H. Oh, Decomposition of Urea into NH3 for the SCR Process. Industrial & Engineering Chemistry Research, 2004. 43(16): p. 4856-4863.DOI: 10.1021/ie034052j.
54. Cochran, S.J. and F.P. Larkins, Surface reduction of some transition-metal oxides. An X-ray photoelectron spectroscopic study of iron, cobalt, nickel and zinc oxides. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1985. 81(9): p. 2179-2190.DOI: 10.1039/F19858102179.
55. Chuang, T.J., C.R. Brundle, and D.W. Rice, Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surface Science, 1976. 59(2): p. 413-429.DOI: 10.1016/0039-6028(76)90026-1.
56. Natarajan, K., E. Munirathinam, and T.C.K. Yang, Operando Investigation of Structural and Chemical Origin of Co3O4 Stability in Acid under Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021. 13(23): p. 27140-27148.DOI: 10.1021/acsami.1c07267.
57. Tyuliev, G. and S. Angelov, The nature of excess oxygen in Co3O4+ϵ. Applied Surface Science, 1988. 32(4): p. 381-391.DOI: 10.1016/0169-4332(88)90089-X.
58. Yoneda, H., Stability of Cobalt (III) and Chromium (III) Ammine Complexes in a Strongly Alkaline Solution. Bulletin of the Chemical Society of Japan, 1958. 31(1): p. 74-79.DOI: 10.1246/bcsj.31.74.
59. Wang, C., H. Zhan, X. Lu, R. Jing, H. Zhang, L. Yang, X. Li, F. Yue, D. Zhou, and Q. Xia, A recyclable cobalt(iii)–ammonia complex catalyst for catalytic epoxidation of olefins with air as the oxidant. New Journal of Chemistry, 2021. 45(4): p. 2147-2156.DOI: 10.1039/D0NJ05466F.
60. Green, M. and H. Taube, The Mechanism of Base Hydrolysis of Substituted Pentaamminecobalt(III) Complexes. Inorganic Chemistry, 1963. 2(5): p. 948-950.DOI: 10.1021/ic50009a016.
61. Xiao, Z., Y.-C. Huang, C.-L. Dong, C. Xie, Z. Liu, S. Du, W. Chen, D. Yan, L. Tao, Z. Shu, G. Zhang, H. Duan, Y. Wang, Y. Zou, R. Chen, and S. Wang, Operando Identification of the Dynamic Behavior of Oxygen Vacancy-Rich Co3O4 for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2020. 142(28): p. 12087-12095.DOI: 10.1021/jacs.0c00257.
62. Wang, X., X. Li, J. Mu, S. Fan, X. Chen, L. Wang, Z. Yin, M. Tadé, and S. Liu, Oxygen Vacancy-rich Porous Co3O4 Nanosheets toward Boosted NO Reduction by CO and CO Oxidation: Insights into the Structure–Activity Relationship and Performance Enhancement Mechanism. ACS Applied Materials & Interfaces, 2019. 11(45): p. 41988-41999.DOI: 10.1021/acsami.9b08664.
63. Ramis-Ramos, G., ANTIOXIDANTS | Synthetic Antioxidants, in Encyclopedia of Food Sciences and Nutrition (Second Edition), B. Caballero, Editor. 2003, Academic Press: Oxford. p. 265-275. 64. Da Silva, L.M., J.F.C. Boodts, and L.A. De Faria, Oxygen evolution at RuO2(x)+Co3O4(1−x) electrodes from acid solution. Electrochimica Acta, 2001. 46(9): p. 1369-1375.DOI: 10.1016/S0013-4686(00)00716-7.
65. Jin, H., C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, and S.-Z. Qiao, Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018. 118(13): p. 6337-6408.DOI: 10.1021/acs.chemrev.7b00689.
66. Bajdich, M., M. García-Mota, A. Vojvodic, J.K. Nørskov, and A.T. Bell, Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. Journal of the American Chemical Society, 2013. 135(36): p. 13521-13530.DOI: 10.1021/ja405997s.
67. Frensch, S.H., A.C. Olesen, S.S. Araya, and S.K. Kær, Model-supported characterization of a PEM water electrolysis cell for the effect of compression. Electrochimica Acta, 2018. 263: p. 228-236.DOI: 10.1016/j.electacta.2018.01.040.
68. Lufrano, F., P. Staiti, and M. Minutoli, Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy. Journal of Power Sources, 2003. 124(1): p. 314-320.DOI: 10.1016/S0378-7753(03)00589-5.
69. Wu, X., J. Tayal, S. Basu, and K. Scott, Nano-crystalline RuxSn1−xO2 powder catalysts for oxygen evolution reaction in proton exchange membrane water electrolysers. International Journal of Hydrogen Energy, 2011. 36(22): p. 14796-14804.DOI: 10.1016/j.ijhydene.2011.01.067.
70. Li, A., H. Ooka, N. Bonnet, T. Hayashi, Y. Sun, Q. Jiang, C. Li, H. Han, and R. Nakamura, Stable Potential Windows for Long-Term Electrocatalysis by Manganese Oxides Under Acidic Conditions. Angew Chem Int Ed Engl, 2019. 58(15): p. 5054-5058.DOI: 10.1002/anie.201813361.
|