帳號:guest(18.191.178.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉上慈
作者(外文):Liu, Shang-Tzu
論文名稱(中文):以電鍍添加劑誘導雙晶與不同晶面優選銅箔高速電化學沉積及其相關電化學分析
論文名稱(外文):High-Speed Electrodeposition and Corresponding Electrochemical Analysis of Nanotwinned and Crystal Orientation-Controlled Copper Induced by Electroplating Additives
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi-Chang
口試委員(中文):張仍奎
陳翰儀
口試委員(外文):Chang, Jeng-Kuei
Chen, Han-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:109032513
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:90
中文關鍵詞:電鍍銅電鍍添加劑奈米雙晶銅晶面優選銅箔電化學分析
外文關鍵詞:copper electroplatingelectroplating additivesnanotwinned coppercrystal orientation copperelectrochemical analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:112
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
奈米雙晶銅存在於銅晶粒中能增加銅膜之熱穩定性、機械強度及降低科肯德爾孔洞之生成。在過去文獻中,許多研究團隊利用不同參數之脈衝電鍍模式製備奈米雙晶銅;然而,脈衝電鍍之電鍍速率較緩慢(通常< 100 mA/cm2)而無法滿足大規模應用之需求。
本研究中,主要探討以直流電鍍模式在高沉積速率下(400 mA/cm2)之鍍銅行為,以下將分為兩部分討論:
1.利用各種電鍍添加劑控制銅箔之晶體優選方向與微結構。
本研究首先以大量硫醇添加劑製備(111)奈米雙晶銅,再者,透過添加抑制劑聚乙二醇即可生成(200)晶面優選取向銅箔,最後,單獨添加高濃度氯離子竟意外地電鍍出(220) 奈米雙晶銅。上述銅箔之晶體晶面分析、微觀結構與原子排列情形分別由X射線繞射儀、聚焦離子束以及穿透式電子顯微鏡完成。本研究成功利用各種添加劑組合於高電流密度下製備不同晶體優選方向及雙晶微結構之銅箔。
2.透過電化學分析研究雙晶微結構與亞銅離子之對應關係。
本研究利用旋轉環盤電極進行線性掃描伏安法以研究銅沉積行為。由於(111) 奈米雙晶銅之反應中間體(硫醇-亞銅離子-氯離子)與(220)奈米雙晶銅之反應中間體(亞銅離子-氯離子)皆能有效加速銅/亞銅離子還原,故亞銅離子之濃度為誘導雙晶結構生長之重要因素;此外,中間體之吸附行為差異亦會影響亞銅離子之氧化電位,將導致銅箔面優選取向的不同。本研究使電鍍銅之生長機制不僅能於材料分析方面著手,更能以電化學分析觀點對雙晶結構與晶面優選有更深入的了解。
Abundant nanotwin defects inside copper grains do improve the thermal stability and tensile strength of copper, and further can decrease the number of Kirkendall voids in the tin/copper interface. In literature, many researchers have reported different parameters of pulse electrodeposition to fabricate nanotwinned copper. However, the deposition rate of pulse electrodeposition is rather slow (usually < 100 mA/cm2) and thus cannot satisfy the requirements of the industry for large-scale applications.
In this work, the high-speed electroplating behavior of copper which is operated in direct-current electrodeposition mode at a high deposition rate (400 mA/cm2) is studied, and there are two major topics:
1. Controlling the crystal preferred orientation and microstructure of copper foil by various electroplating additives.
This work firstly reports the fabrication of (111)-nanotwinned copper by adding a large amount of thiol-based organic additives. Secondly, the further addition of suppressors, polyethylene glycol, into the original plating bath can generate the (200)-preferred orientation copper. Eventually, a high concentration of chloride ions is added separately to plate the (220)-nanotwinned copper accidentally. The crystal orientation, cross-section microstructure, and arrangement of atoms of copper foils are analyzed by X-ray diffraction, focused ion beam, and transmission electron microscope, respectively. By varying the composition of plating baths, we have demonstrated that copper with various crystal orientations and twinned microstructure can be prepared at a high current density.
2. The corresponding relationship between twinned microstructure and cuprous ions was investigated by electrochemical analyses.
Linear sweep voltammetry is carried out on the rotating ring-disk electrode to investigate the copper deposition behavior. Owing to the reaction intermediates of both (111) and (220) nanotwinned copper, thiol-cuprous-chloride, and cuprous-chloride, respectively, at the cathode can effectively accelerate the reduction of cupric/cuprous ions. It has been observed that the concentration of cuprous ions is the essential factor in the growth of twinned structures. Furthermore, the difference in the adsorption of the intermediate complex influences the oxidation potential of the cuprous ions which may determine the crystal preferred orientation of copper. It is worth mentioning that through this study, the growth mechanism of electrodeposition copper can not only be started in the material analysis hand but also can have a more in-depth understanding of the twinned structure and preferred orientation from the perspective of electrochemical analysis.
摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 x
表目錄 xv
第一章 緒論 1
1.1. 前言 1
1.2. 動機 2
第二章 文獻回顧 5
2.1. 電化學 5
2.1.1. 電化學系統 5
2.1.2. 電化學熱力學與動力學 7
2.1.3. 電化學分析方法 9
2.1.4. 流動系統之電化學分析 10
2.2. 電鍍銅 12
2.2.1. 背景知識 12
2.2.2. 電鍍添加劑 16
2.2.3. 陽極材料 29
2.2.4. 奈米雙晶銅 32
第三章 實驗流程與儀器簡介 37
3.1. 實驗架構 37
3.2. 化學藥品 38
3.2.1. 電鍍銅 38
3.2.2. 電化學拋光 39
3.3. 材料與儀器設備 40
3.3.1. 電鍍銅箔實驗設備 40
3.3.2. 材料分析貴重儀器 40
3.3.3. 電化學分析設備 41
3.4. 實驗步驟 41
3.4.1. 電解液配置 41
3.4.2. 添加劑母液配置 42
3.4.3. 陰極鈦基板預處理 43
3.4.4. 電鍍銅沉積之實驗流程 43
3.4.5. 電化學拋光 45
3.4.6.電化學實驗分析 45
3.5. 材料分析 46
3.5.1. 掃描式電子顯微鏡(Scanning Electron Microscopy) 46
3.5.2. 聚焦離子束顯微鏡(Focused Ion Beam) 47
3.5.3. X射線繞射儀(X-Ray Diffraction) 48
3.5.4. 穿透式電子顯微鏡(Transmission Electron Microscope) 48
第四章 結果與討論 50
4.1. 硫醇添加劑與(111)銅晶面之關係 50
4.2. 抑制劑濃度與(200)銅晶面之關係 56
4.3. 氯離子濃度與(220)銅晶面之關係 62
4.4. 利用電化學方法探討雙晶生長機制 68
4.4.1. (220)奈米雙晶銅與一價銅離子之關係 68
4.4.2. (111)奈米雙晶銅與(220)奈米雙晶銅電化學表現之差異 74
第五章 結論與未來展望 79
5.1. 透過電鍍添加劑電鍍奈米雙晶銅箔及晶面優選銅箔 79
5.2. 以電化學分析手法探討誘導雙晶成長之主要關鍵 81
5.3. 未來展望 83
第六章 參考文獻 84
[1] Anderoglu, O., et al., Thermal stability of sputtered Cu films with nanoscale growth twins. Journal of Applied Physics, 2008. 103(9): p. 094322.
[2] Lu, L., et al., Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-426.
[3] Lu, L., et al., Revealing the maximum strength in nanotwinned copper. Science, 2009. 323(5914): p. 607-610.
[4] Kim, D., et al., Formation and behavior of Kirkendall voids within intermetallic layers of solder joints. Journal of Materials Science: Materials in Electronics, 2011. 22(7): p. 703-716.
[5] Hsiao, H.-Y., et al., Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper. Science, 2012. 336(6084): p. 1007-1010.
[6] Lu, C.-L., et al., Extremely anisotropic single-crystal growth in nanotwinned copper. NPG Asia Materials, 2014. 6(10): p. e135-e135.
[7] Chen, K.-J., J.A. Wu, and C. Chen, Effect of Reverse Currents during Electroplating on the⟨ 111⟩-Oriented and Nanotwinned Columnar Grain Growth of Copper Films. Crystal Growth & Design, 2020. 20(6): p. 3834-3841.
[8] Chang, T., et al., Synergistic effects of gelatin and convection on copper foil electrodeposition. Electrochimica Acta, 2016. 211: p. 245-254.
[9] Lagrange, S., et al., Self-annealing characterization of electroplated copper films. Microelectronic Engineering, 2000. 50(1-4): p. 449-457.
[10] Ho, C.-E., et al., In-situ study on the self-annealing behavior of electroplated Cu through the cantilever method, XRD, and EBSD. Surface and Coatings Technology, 2016. 303: p. 86-93.
[11] Gao, J., et al., Influence of crystal orientation on copper oxidation failure. Applied surface science, 2009. 255(11): p. 5943-5947.
[12] Kim, Y.-J., et al., Facet selectivity of Cu current collector for Li electrodeposition. Energy Storage Materials, 2019. 19: p. 154-162.
[13] Shen, C., et al., Single crystal Cu (110) inducing lateral growth of electrodeposition Li for dendrite-free Li metal-based batteries. Journal of Power Sources, 2021. 501: p. 229969.
[14] Lin, C.-C. and C.-C. Hu. Manufacture of Copper Foils for the Current Collector of Lithium-Ion Batteries By Electrochemical Deposition. in ECS Meeting Abstracts. 2017. IOP Publishing.
[15] Frank, O., et al., Interaction between graphene and copper substrate: The role of lattice orientation. Carbon, 2014. 68: p. 440-451.
[16] Zhang, X., et al., Effect of Copper Substrate Surface Orientation on the Reductive Functionalization of Graphene. Chemistry of Materials, 2019. 31(21): p. 8639-8648.
[17] De Gregorio, G.L., et al., Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities. ACS catalysis, 2020. 10(9): p. 4854-4862.
[18] Chiang, P.-C., et al., Electrodeposition of twinned cu with strong texture effect on voiding propensity in electroplated Cu solder joints. Journal of the Electrochemical Society, 2021. 167(16): p. 162516.
[19] Hasegawa, M., et al., Orientation-controlled nanotwinned copper prepared by electrodeposition. Electrochimica Acta, 2015. 178: p. 458-467.
[20] Thorseth, M.S., M.; Lee, I.; Park, S.-M.; Lee, Y.-H.; Prange, J.; Imanari, M.; Lefebvre, M.; Calvert, J., Evaluation of Cu Pillar Chemistries. iMAPS Device Packaging Conference, 2016.
[21] Hu, C.C., Electrochemistry principles and methods. 2011, Taiwan: Wunanbooks.
[22] Bard, A.J. and L.R. Faulkner, Fundamentals and applications. Electrochemical methods, 2001. 2(482): p. 580-632.
[23] Moffat, T.P., D. Wheeler, and D. Josell, Electrodeposition of copper in the SPS-PEG-Cl additive system: I. kinetic measurements: Influence of SPS. Journal of The Electrochemical Society, 2004. 151(4): p. C262.
[24] Conway, B., J.O.M. Bockris, and H. Linton, Proton conductance and the existence of the H3O· ion. The Journal of Chemical Physics, 1956. 24(4): p. 834-850.
[25] Mattsson, E. and J.M. Bockris, Galvanostatic studies of the kinetics of deposition and dissolution in the copper+ copper sulphate system. Transactions of the Faraday Society, 1959. 55: p. 1586-1601.
[26] Daryadel, S., et al., Localized pulsed electrodeposition process for three-dimensional printing of nanotwinned metallic nanostructures. Nano letters, 2018. 18(1): p. 208-214.
[27] Kondo, K., et al., Copper electrodeposition for nanofabrication of electronics devices. Vol. 171. 2014: Springer.
[28] Nagy, Z., et al., Chloride ion catalysis of the copper deposition reaction. Journal of the Electrochemical Society, 1995. 142(6): p. L87.
[29] Soares, D.M., et al., Copper ion reduction catalyzed by chloride ions. Journal of Electroanalytical Chemistry, 2002. 532(1-2): p. 353-358.
[30] Beica, R., C. Sharbono, and T. Ritzdorf. Through silicon via copper electrodeposition for 3D integration. in 2008 58th Electronic Components and Technology Conference. 2008. IEEE.
[31] Yokoi, M., S. Konishi, and T. Hayashi, Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1984. 52(4): p. 218-223.
[32] Kelly, J.J. and A.C. West, Copper deposition in the presence of polyethylene glycol: I. Quartz crystal microbalance study. Journal of The Electrochemical Society, 1998. 145(10): p. 3472.
[33] Kelly, J.J. and A.C. West, Copper deposition in the presence of polyethylene glycol: II. Electrochemical impedance spectroscopy. Journal of The Electrochemical Society, 1998. 145(10): p. 3477.
[34] Feng, Z.V., X. Li, and A.A. Gewirth, Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced Raman study. The Journal of Physical Chemistry B, 2003. 107(35): p. 9415-9423.
[35] Dow, W.-P., et al., Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating. Journal of The Electrochemical Society, 2005. 152(11): p. C769.
[36] Chen, B., et al., Synthesis of quaternary ammonium salts based on diketopyrrolopyrroles skeletons and their applications in copper electroplating. ACS applied materials & interfaces, 2017. 9(8): p. 7793-7803.
[37] Kelly, J.J., C. Tian, and A.C. West, Leveling and microstructural effects of additives for copper electrodeposition. Journal of the Electrochemical Society, 1999. 146(7): p. 2540.
[38] Dow, W.-P., et al., Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating. Journal of The Electrochemical Society, 2005. 152(6): p. C425.
[39] Dow, W.-P. and C.-W. Liu, Evaluating the filling performance of a copper plating formula using a simple galvanostat method. Journal of The Electrochemical Society, 2006. 153(3): p. C190.
[40] Lee, C.H., S.C. Lee, and J.J. Kim, Bottom-up filling in Cu electroless deposition using bis-(3-sulfopropyl)-disulfide (SPS). Electrochimica acta, 2005. 50(16-17): p. 3563-3568.
[41] Choe, S., et al., Degradation of bis (3-sulfopropyl) disulfide and its influence on copper electrodeposition for feature filling. Journal of The Electrochemical Society, 2013. 160(12): p. D3179.
[42] Akolkar, R. and U. Landau, A time-dependent transport-kinetics model for additive interactions in copper interconnect metallization. Journal of The Electrochemical Society, 2004. 151(11): p. C702.
[43] Schmitt, K.G., et al., 3-Mercapto-1-propanesulfonate for Cu electrodeposition studied by in situ shell-isolated nanoparticle-enhanced Raman spectroscopy, density functional theory calculations, and cyclic voltammetry. The Journal of Physical Chemistry C, 2015. 119(41): p. 23453-23462.
[44] Dow, W.-P., et al., Roles of chloride ion in microvia filling by copper electrodeposition: II. Studies using EPR and galvanostatic measurements. Journal of The Electrochemical Society, 2005. 152(2): p. C77.
[45] Brennan, R.G., et al., Characterization and purification of commercial SPS and MPS by ion chromatography and mass spectrometry. Journal of The Electrochemical Society, 2011. 158(3): p. D178.
[46] Hayashi, T., et al., Role of cuprous ion in copper electrodeposition acceleration. Journal of The Electrochemical Society, 2015. 162(6): p. D199.
[47] Chiu, Y.-D. and W.-P. Dow, Accelerator screening by cyclic voltammetry for microvia filling by copper electroplating. Journal of The Electrochemical Society, 2013. 160(12): p. D3021.
[48] Kimizuka, R., et al., Influence of SPS decomposition product 1, 3-propane disulfonic acid on electrolytic copper via filling performance. Journal of The Electrochemical Society, 2015. 162(12): p. D584.
[49] Hu, C.-C., et al., Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano letters, 2006. 6(12): p. 2690-2695.
[50] Hu, C.-C. and W.-C. Chen, Effects of substrates on the capacitive performance of RuOx· nH2O and activated carbon–RuOx electrodes for supercapacitors. Electrochimica Acta, 2004. 49(21): p. 3469-3477.
[51] Lu, K., Stabilizing nanostructures in metals using grain and twin boundary architectures. Nature Reviews Materials, 2016. 1(5): p. 1-13.
[52] Chen, K.-C., et al., Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 2008. 321(5892): p. 1066-1069.
[53] Lin, C.-C. and C.-C. Hu, The ultrahigh-rate growth of nanotwinned copper induced by thiol organic additives. Journal of The Electrochemical Society, 2020. 167(8): p. 082505.
[54] Bozorth, R.M., The Orientations of Crystals in Electrodeposited Metals. Physical Review, 1925. 26(3): p. 390-400.
[55] Stukowski, A., K. Albe, and D. Farkas, Nanotwinned fcc metals: Strengthening versus softening mechanisms. Physical Review B, 2010. 82(22): p. 224103.
[56] Chan, T.-C., Y.-L. Chueh, and C.-N. Liao, Manipulating the crystallographic texture of nanotwinned Cu films by electrodeposition. Crystal growth & design, 2011. 11(11): p. 4970-4974.
[57] Kremmer, K., et al., Interplay between the deposition mode and microstructure in electrochemically deposited Cu thin films. Thin Solid Films, 2007. 515(17): p. 6698-6706.
[58] Gu, Y., et al., Lithiophilic faceted Cu (100) surfaces: high utilization of host surface and cavities for lithium metal anodes. Angewandte Chemie International Edition, 2019. 58(10): p. 3092-3096.
[59] Ishikawa, K., et al., Effect of crystal orientation of Cu current collectors on cycling stability of Li metal anodes. ACS applied materials & interfaces, 2020. 12(8): p. 9341-9346.
[60] Qian, J., et al., Lithium induced nano‐sized copper with exposed lithiophilic surfaces to achieve dense lithium deposition for lithium metal anode. Advanced Functional Materials, 2021. 31(7): p. 2006950.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *