|
1. Lip, G. Y. H.; Fauchier, L.; Freedman, S. B.; Van Gelder, I.; Natale, A.; Gianni, C.; Nattel, S.; Potpara, T.; Rienstra, M.; Tse, H.-F.; Lane, D. A., Atrial fibrillation. Nature Reviews Disease Primers 2016, 2 (1), 16016. 2. Nattel, S.; Harada, M., Atrial Remodeling and Atrial Fibrillation. Journal of the American College of Cardiology 2014, 63 (22), 2335-2345. 3. Pellman, J.; Sheikh, F., Atrial fibrillation: mechanisms, therapeutics, and future directions. Compr Physiol 2015, 5 (2), 649-665. 4. Zhou, J.; Scherlag, B. J.; Edwards, J.; Jackman, W. M.; Lazzara, R.; Po, S. S., Gradients of Atrial Refractoriness and Inducibility of Atrial Fibrillation due to Stimulation of Ganglionated Plexi. Journal of Cardiovascular Electrophysiology 2007, 18 (1), 83-90. 5. Schmidt, C.; Kisselbach, J.; Schweizer, P. A.; Katus, H. A.; Thomas, D., The pathology and treatment of cardiac arrhythmias: focus on atrial fibrillation. Vasc Health Risk Manag 2011, 7, 193-202. 6. Lankveld, T. A. R.; Zeemering, S.; Crijns, H. J. G. M.; Schotten, U., The ECG as a tool to determine atrial fibrillation complexity. Heart 2014, 100 (14), 1077. 7. Burstein, B.; Nattel, S., Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation. Journal of the American College of Cardiology 2008, 51 (8), 802-809. 8. Iqbal, M. B.; Taneja, A. K.; Lip, G. Y. H.; Flather, M., Recent developments in atrial fibrillation. BMJ 2005, 330 (7485), 238. 9. Vassallo, P.; Trohman, R. G., Prescribing AmiodaroneAn Evidence-Based Review of Clinical Indications. JAMA 2007, 298 (11), 1312-1322. 10. Bronheim, D.; Nicoara, A.; Abel, M., Chapter 44. Cardiovascular Drugs. In Anesthesiology, 2e, Longnecker, D. E.; Brown, D. L.; Newman, M. F.; Zapol, W. M., Eds. The McGraw-Hill Companies: New York, NY, 2012. 11. Greenstein, D.; Beau, J.; Gottlieb, G.; Teller, D.; Kulik, A., Topical amiodarone during cardiac surgery: Does epicardial application of amiodarone prevent postoperative atrial fibrillation? The Journal of Thoracic and Cardiovascular Surgery 2017, 154 (3), 886-892. 12. Lip, G. Y. H.; Beevers, D. G., ABC of Atrial Fibrillation: HISTORY, EPIDEMIOLOGY, AND IMPORTANCE OF ATRIAL FIBRILLATION. BMJ 1995, 311 (7016), 1361. 13. Garcia, J. R.; Campbell, P. F.; Kumar, G.; Langberg, J. J.; Cesar, L.; Deppen, J. N.; Shin, E. Y.; Bhatia, N. K.; Wang, L.; Xu, K.; Schneider, F.; Robinson, B.; García, A. J.; Levit, R. D., Minimally Invasive Delivery of Hydrogel-Encapsulated Amiodarone to the Epicardium Reduces Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology 2018, 11 (5), e006408. 14. Dobrev, D.; Nattel, S., New antiarrhythmic drugs for treatment of atrial fibrillation. The Lancet 2010, 375 (9721), 1212-1223. 15. Kraft, M.; Büscher, A.; Wiedmann, F.; L’hoste, Y.; Haefeli, W. E.; Frey, N.; Katus, H. A.; Schmidt, C., Current Drug Treatment Strategies for Atrial Fibrillation and TASK-1 Inhibition as an Emerging Novel Therapy Option. Frontiers in Pharmacology 2021, 12. 16. Piccini, J. P.; Fauchier, L., Rhythm control in atrial fibrillation. The Lancet 2016, 388 (10046), 829-840. 17. Narayan, S. M.; Cain, M. E.; Smith, J. M., Atrial fibrillation. The Lancet 1997, 350 (9082), 943-950. 18. Maršánová, L.; Němcová, A.; Smíšek, R.; Vítek, M.; Smital, L., Advanced P Wave Detection in Ecg Signals During Pathology: Evaluation in Different Arrhythmia Contexts. Scientific Reports 2019, 9 (1), 19053. 19. Couceiro, R.; Carvalho, P.; Henriques, J.; Antunes, M.; Harris, M.; Habetha, J. In Detection of Atrial Fibrillation using model-based ECG analysis, 2008 19th International Conference on Pattern Recognition, 8-11 Dec. 2008; 2008; pp 1-5. 20. Wakili, R.; Voigt, N.; Kääb, S.; Dobrev, D.; Nattel, S., Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest 2011, 121 (8), 2955-68. 21. Deng, Z.; Guo, Y.; Ma, P. X.; Guo, B., Rapid thermal responsive conductive hybrid cryogels with shape memory properties, photothermal properties and pressure dependent conductivity. Journal of Colloid and Interface Science 2018, 526, 281-294. 22. Le, T.-H.; Kim, Y.; Yoon, H., Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9 (4). 23. Wu, Y.; Wang, L.; Guo, B.; Ma, P. X., Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy. ACS Nano 2017, 11 (6), 5646-5659. 24. d’Ischia, M.; Napolitano, A.; Ball, V.; Chen, C.-T.; Buehler, M. J., Polydopamine and Eumelanin: From Structure–Property Relationships to a Unified Tailoring Strategy. Accounts of Chemical Research 2014, 47 (12), 3541-3550. 25. Xie, Y.; Zheng, Y.; Fan, J.; Wang, Y.; Yue, L.; Zhang, N., Novel Electronic–Ionic Hybrid Conductive Composites for Multifunctional Flexible Bioelectrode Based on in Situ Synthesis of Poly(dopamine) on Bacterial Cellulose. ACS Applied Materials & Interfaces 2018, 10 (26), 22692-22702. 26. Liu, Y.; Ai, K.; Lu, L., Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews 2014, 114 (9), 5057-5115. 27. Xu, L. Q.; Yang, W. J.; Neoh, K.-G.; Kang, E.-T.; Fu, G. D., Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules 2010, 43 (20), 8336-8339. 28. Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W., Perspectives on poly(dopamine). Chemical Science 2013, 4 (10), 3796-3802. 29. Wang, F.; Sun, Q.; Feng, B.; Xu, Z.; Zhang, J.; Xu, J.; Lu, L.; Yu, H.; Wang, M.; Li, Y.; Zhang, W., Polydopamine-Functionalized Graphene Oxide Loaded with Gold Nanostars and Doxorubicin for Combined Photothermal and Chemotherapy of Metastatic Breast Cancer. Advanced Healthcare Materials 2016, 5 (17), 2227-2236. 30. Wang, L.; Liu, Y.; Ye, G.; He, Y.; Li, B.; Guan, Y.; Gong, B.; Mequanint, K.; Xing, M. M. Q.; Qiu, X., Injectable and conductive cardiac patches repair infarcted myocardium in rats and minipigs. Nature Biomedical Engineering 2021, 5 (10), 1157-1173. 31. Coskun, H.; Aljabour, A.; Uiberlacker, L.; Strobel, M.; Hild, S.; Cobet, C.; Farka, D.; Stadler, P.; Sariciftci, N. S., Chemical vapor deposition - based synthesis of conductive polydopamine thin-films. Thin Solid Films 2018, 645, 320-325. 32. Karfeld-Sulzer, L. S.; Waters, E. A.; Kohlmeir, E. K.; Kissler, H.; Zhang, X.; Kaufman, D. B.; Barron, A. E.; Meade, T. J., Protein polymer MRI contrast agents: Longitudinal analysis of biomaterials in vivo. Magnetic Resonance in Medicine 2011, 65 (1), 220-228. 33. Martina, M.-S.; Fortin, J.-P.; Ménager, C.; Clément, O.; Barratt, G.; Grabielle-Madelmont, C.; Gazeau, F.; Cabuil, V.; Lesieur, S., Generation of Superparamagnetic Liposomes Revealed as Highly Efficient MRI Contrast Agents for in Vivo Imaging. Journal of the American Chemical Society 2005, 127 (30), 10676-10685. 34. Berger, A., Magnetic resonance imaging. BMJ 2002, 324 (7328), 35-35. 35. Cao, Y.; Xu, L.; Kuang, Y.; Xiong, D.; Pei, R., Gadolinium-based nanoscale MRI contrast agents for tumor imaging. Journal of Materials Chemistry B 2017, 5 (19), 3431-3461. 36. Qiao, R.; Yang, C.; Gao, M., Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. Journal of Materials Chemistry 2009, 19 (35), 6274-6293. 37. Xu, C.; Mu, L.; Roes, I.; Miranda-Nieves, D.; Nahrendorf, M.; Ankrum, J. A.; Zhao, W.; Karp, J. M., Nanoparticle-based monitoring of cell therapy. Nanotechnology 2011, 22 (49), 494001. 38. Shen, L.-h.; Bao, J.-f.; Wang, D.; Wang, Y.-x.; Chen, Z.-w.; Ren, L.; Zhou, X.; Ke, X.-b.; Chen, M.; Yang, A.-q., One-step synthesis of monodisperse, water-soluble ultra-small Fe3O4 nanoparticles for potential bio-application. Nanoscale 2013, 5 (5), 2133-2141. 39. Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T., Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews 2011, 63 (1), 24-46. 40. Bonnemain, B., Superparamagnetic Agents in Magnetic Resonance Imaging: Physicochemical Characteristics and Clinical Applications A Review. Journal of Drug Targeting 1998, 6 (3), 167-174. 41. Di Marco, M.; Sadun, C.; Port, M.; Guilbert, I.; Couvreur, P.; Dubernet, C., Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomedicine 2007, 2 (4), 609-622. 42. Neuwelt, A.; Sidhu, N.; Hu, C.-A. A.; Mlady, G.; Eberhardt, S. C.; Sillerud, L. O., Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am J Roentgenol 2015, 204 (3), W302-W313. 43. Lam, T.; Avti, P. K.; Pouliot, P.; Maafi, F.; Tardif, J.-C.; Rhéaume, É.; Lesage, F.; Kakkar, A., Fabricating Water Dispersible Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications through Ligand Exchange and Direct Conjugation. Nanomaterials 2016, 6 (6). 44. Wan, W.-L.; Tian, B.; Lin, Y.-J.; Korupalli, C.; Lu, M.-Y.; Cui, Q.; Wan, D.; Chang, Y.; Sung, H.-W., Photosynthesis-inspired H2 generation using a chlorophyll-loaded liposomal nanoplatform to detect and scavenge excess ROS. Nature Communications 2020, 11 (1), 534. 45. Dong, A.; Ye, X.; Chen, J.; Kang, Y.; Gordon, T.; Kikkawa, J. M.; Murray, C. B., A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals. Journal of the American Chemical Society 2011, 133 (4), 998-1006. 46. Yang, F.; Li, Y.; Chen, Z.; Zhang, Y.; Wu, J.; Gu, N., Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 2009, 30 (23), 3882-3890. 47. Wang, Y.-X. J., Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant Imaging Med Surg 2011, 1 (1), 35-40. 48. Nattel, S.; Carlsson, L., Innovative approaches to anti-arrhythmic drug therapy. Nature Reviews Drug Discovery 2006, 5 (12), 1034-1049. 49. Riley, M. J.; Marrouche, N. F., Ablation of Atrial Fibrillation. Current Problems in Cardiology 2006, 31 (5), 361-390. 50. Zhu, D.; Li, Z.; Huang, K.; Caranasos, T. G.; Rossi, J. S.; Cheng, K., Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nature Communications 2021, 12 (1), 1412. 51. Garcia Jose, R.; Campbell Peter, F.; Kumar, G.; Langberg Jonathan, J.; Cesar, L.; Wang, L.; García Andrés, J.; Levit Rebecca, D., A Minimally Invasive, Translational Method to Deliver Hydrogels to the Heart Through the Pericardial Space. JACC: Basic to Translational Science 2017, 2 (5), 601-609. 52. Liang, X.; Wang, X.; Zhuang, J.; Chen, Y.; Wang, D.; Li, Y., Synthesis of Nearly Monodisperse Iron Oxide and Oxyhydroxide Nanocrystals. Advanced Functional Materials 2006, 16 (14), 1805-1813. 53. Zatorski, J. M.; Montalbine, A. N.; Ortiz-Cárdenas, J. E.; Pompano, R. R., Quantification of fractional and absolute functionalization of gelatin hydrogels by optimized ninhydrin assay and 1H NMR. Analytical and Bioanalytical Chemistry 2020, 412 (24), 6211-6220. 54. Tiong, W. H. C.; Damodaran, G.; Naik, H.; Kelly, J. L.; Pandit, A., Enhancing Amine Terminals in an Amine-Deprived Collagen Matrix. Langmuir 2008, 24 (20), 11752-11761. 55. Chan, J. C. Y.; Burugapalli, K.; Naik, H.; Kelly, J. L.; Pandit, A., Amine Functionalization of Cholecyst-Derived Extracellular Matrix with Generation 1 PAMAM Dendrimer. Biomacromolecules 2008, 9 (2), 528-536. 56. Kuijpers, A. J.; Engbers, G. H. M.; Krijgsveld, J.; Zaat, S. A. J.; Dankert, J.; Feijen, J., Cross-linking and characterisation of gelatin matrices for biomedical applications. Journal of Biomaterials Science, Polymer Edition 2000, 11 (3), 225-243. 57. Ozcan, C.; Battaglia, E.; Young, R.; Suzuki, G., LKB1 Knockout Mouse Develops Spontaneous Atrial Fibrillation and Provides Mechanistic Insights Into Human Disease Process. Journal of the American Heart Association 4 (3), e001733. 58. Ghosh, K.; Van Duyne, G. D., Cre–loxP biochemistry. Methods 2002, 28 (3), 374-383. 59. Kühn, R.; M. Torres, R., Cre/loxP Recombination System and Gene Targeting. In Transgenesis Techniques: Principles and Protocols, Clarke, A. R., Ed. Springer New York: Totowa, NJ, 2002; pp 175-204. 60. Kunhareang, S.; Zhou, H.; Hickford, J. G. H., Rapid DNA extraction of pig ear tissues. Meat Science 2010, 85 (3), 589-590. 61. Zhang, L.; Li, T.; Yu, Y.; Shi, K.; Bei, Z.; Qian, Y.; Qian, Z., An injectable conductive hydrogel restores electrical transmission at myocardial infarct site to preserve cardiac function and enhance repair. Bioactive Materials 2023, 20, 339-354. 62. Zhang, C.; Hsieh, M.-H.; Wu, S.-Y.; Li, S.-H.; Wu, J.; Liu, S.-M.; Wei, H.-J.; Weisel, R. D.; Sung, H.-W.; Li, R.-K., A self-doping conductive polymer hydrogel that can restore electrical impulse propagation at myocardial infarct to prevent cardiac arrhythmia and preserve ventricular function. Biomaterials 2020, 231, 119672. 63. Bélchaard, P.; Savard, P.; Cardinal, R.; Nadeau, R.; Gosselin, H.; Paradis, P.; Rouleau, J. L., Markedly different effects on ventricular remodelling result in a decrease in inducibility of ventricular arrhythmias. Journal of the American College of Cardiology 1994, 23 (2), 505-513. 64. Yue, L.; Xie, J.; Nattel, S., Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovascular Research 2011, 89 (4), 744-753. 65. Hu, S.-H.; Liu, T.-Y.; Liu, D.-M.; Chen, S.-Y., Nano-ferrosponges for controlled drug release. Journal of Controlled Release 2007, 121 (3), 181-189. 66. Casula, M. F.; Floris, P.; Innocenti, C.; Lascialfari, A.; Marinone, M.; Corti, M.; Sperling, R. A.; Parak, W. J.; Sangregorio, C., Magnetic Resonance Imaging Contrast Agents Based on Iron Oxide Superparamagnetic Ferrofluids. Chemistry of Materials 2010, 22 (5), 1739-1748. 67. Patil, U. S.; Adireddy, S.; Jaiswal, A.; Mandava, S.; Lee, B. R.; Chrisey, D. B., In Vitro/In Vivo Toxicity Evaluation and Quantification of Iron Oxide Nanoparticles. International Journal of Molecular Sciences 2015, 16 (10). 68. Voinov, M. A.; Pagán, J. O. S.; Morrison, E.; Smirnova, T. I.; Smirnov, A. I., Surface-Mediated Production of Hydroxyl Radicals as a Mechanism of Iron Oxide Nanoparticle Biotoxicity. Journal of the American Chemical Society 2011, 133 (1), 35-41. 69. Jun, Y.-w.; Lee, J.-H.; Cheon, J., Chemical Design of Nanoparticle Probes for High-Performance Magnetic Resonance Imaging. Angewandte Chemie International Edition 2008, 47 (28), 5122-5135. 70. Lee, N.; Hyeon, T., Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews 2012, 41 (7), 2575-2589. 71. Qian, K.-Y.; Song, Y.; Yan, X.; Dong, L.; Xue, J.; Xu, Y.; Wang, B.; Cao, B.; Hou, Q.; Peng, W.; Hu, J.; Jiang, K.; Chen, S.; Wang, H.; Lu, Y., Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. Biomaterials 2020, 259, 120299. 72. Sanfilippo, A. J.; Abascal, V. M.; Sheehan, M.; Oertel, L. B.; Harrigan, P.; Hughes, R. A.; Weyman, A. E., Atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation 1990, 82 (3), 792-797. 73. Lin, X.; Liu, Y.; Bai, A.; Cai, H.; Bai, Y.; Jiang, W.; Yang, H.; Wang, X.; Yang, L.; Sun, N.; Gao, H., A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nature Biomedical Engineering 2019, 3 (8), 632-643. 74. Zhang, C.; Ma, M.-Q.; Chen, T.-T.; Zhang, H.; Hu, D.-F.; Wu, B.-H.; Ji, J.; Xu, Z.-K., Dopamine-Triggered One-Step Polymerization and Codeposition of Acrylate Monomers for Functional Coatings. ACS Applied Materials & Interfaces 2017, 9 (39), 34356-34366. 75. Gan, D.; Xu, T.; Xing, W.; Wang, M.; Fang, J.; Wang, K.; Ge, X.; Chan, C. W.; Ren, F.; Tan, H.; Lu, X., Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration. Journal of Materials Chemistry B 2019, 7 (10), 1716-1725. 76. Shin, Y. M.; Park, H.; Shin, H., Enhancement of cardiac myoblast responses onto electrospun PLCL fibrous matrices coated with polydopamine for gelatin immobilization. Macromolecular Research 2011, 19 (8), 835-842. 77. Choi, W.; Lee, S.; Kim, S.-H.; Jang, J.-H., Polydopamine Inter-Fiber Networks: New Strategy for Producing Rigid, Sticky, 3D Fluffy Electrospun Fibrous Polycaprolactone Sponges. Macromolecular Bioscience 2016, 16 (6), 824-835. 78. Solazzo, M.; O'Brien, F. J.; Nicolosi, V.; Monaghan, M. G., The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioengineering 2019, 3 (4), 041501. 79. Saiz-Poseu, J.; Mancebo-Aracil, J.; Nador, F.; Busqué, F.; Ruiz-Molina, D., The Chemistry behind Catechol-Based Adhesion. Angewandte Chemie International Edition 2019, 58 (3), 696-714. 80. Sedó, J.; Saiz-Poseu, J.; Busqué, F.; Ruiz-Molina, D., Catechol-Based Biomimetic Functional Materials. Advanced Materials 2013, 25 (5), 653-701. 81. Tang, Y.; Wang, X.; Li, Y.; Lei, M.; Du, Y.; Kennedy, J. F.; Knill, C. J., Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydrate Polymers 2010, 82 (3), 833-841. 82. Li, A.; Zhou, J.; Widelitz, R. B.; Chow, R. H.; Chuong, C.-M., Integrating Bioelectrical Currents and Ca(2+) Signaling with Biochemical Signaling in Development and Pathogenesis. Bioelectricity 2020, 2 (3), 210-220. 83. Bers, D. M., Cardiac excitation–contraction coupling. Nature 2002, 415 (6868), 198-205. 84. Fang, J.; Wei, X.; Li, H.; Hu, N.; Liu, X.; Xu, D.; Zhang, T.; Wan, H.; Wang, P.; Xie, X., Cardiomyocyte electrical-mechanical synchronized model for high-content, dose-quantitative and time-dependent drug assessment. Microsystems & Nanoengineering 2021, 7 (1), 26. 85. Fernández-Cossío, S.; Castaño-Oreja, M. T., Biocompatibility of Two Novel Dermal Fillers: Histological Evaluation of Implants of a Hyaluronic Acid Filler and a Polyacrylamide Filler. Plastic and Reconstructive Surgery 2006, 117 (6). 86. Chantawong, P.; Tanaka, T.; Uemura, A.; Shimada, K.; Higuchi, A.; Tajiri, H.; Sakura, K.; Murakami, T.; Nakazawa, Y.; Tanaka, R., Silk fibroin-Pellethane® cardiovascular patches: Effect of silk fibroin concentration on vascular remodeling in rat model. Journal of Materials Science: Materials in Medicine 2017, 28 (12), 191. 87. Patil, R. D.; Dalev, P. G.; Mark, J. E.; Vassileva, E.; Fakirov, S., Biodegradation of chemically modified gelatin films in lake and river waters. Journal of Applied Polymer Science 2000, 76 (1), 29-37. 88. Liu, X.; Cao, J.; Li, H.; Li, J.; Jin, Q.; Ren, K.; Ji, J., Mussel-Inspired Polydopamine: A Biocompatible and Ultrastable Coating for Nanoparticles in Vivo. ACS Nano 2013, 7 (10), 9384-9395. 89. Chen, Z.; Yan, C.; Yan, S.; Liu, Q.; Hou, M.; Xu, Y.; Guo, R., Non-invasive monitoring of in vivo hydrogel degradation and cartilage regeneration by multiparametric MR imaging. Theranostics 2018, 8 (4), 1146-1158. 90. Chen, S.; Hsieh, M.-H.; Li, S.-H.; Wu, J.; Weisel, R. D.; Chang, Y.; Sung, H.-W.; Li, R.-K., A conductive cell-delivery construct as a bioengineered patch that can improve electrical propagation and synchronize cardiomyocyte contraction for heart repair. Journal of Controlled Release 2020, 320, 73-82. 91. Bardai, A.; Blom, M. T.; van Hoeijen, D. A.; van Deutekom, H. W. M.; Brouwer, H. J.; Tan, H. L., Atrial Fibrillation Is an Independent Risk Factor for Ventricular Fibrillation. Circulation: Arrhythmia and Electrophysiology 2014, 7 (6), 1033-1039. 92. Troughton, R. W.; Asher, C. R.; Klein, A. L., The role of echocardiography in atrial fibrillation and cardioversion. Heart 2003, 89 (12), 1447-54. 93. Corrado, G.; Klein, A. L.; Santarone, M., Echocardiography in atrial fibrillation. Journal of Cardiovascular Medicine 2006, 7 (7). 94. McNamara, R. L.; Tamariz, L. J.; Segal, J. B.; Bass, E. B., Management of Atrial Fibrillation: Review of the Evidence for the Role of Pharmacologic Therapy, Electrical Cardioversion, and Echocardiography. Annals of Internal Medicine 2003, 139 (12), 1018-1033. |