帳號:guest(3.145.48.115)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊淑婷
作者(外文):Chung, Sook-Ting
論文名稱(中文):運用氣溶膠合成與分析技術開發氧化釩奈米粒子與其混成式材料作爲超級電容器與電容去離子技術之應用
論文名稱(外文):Controlled Aerosol-based Synthesis of Vanadium Oxides Nanoparticle and Hybrid Nanomaterial for Supercapacitor Application and Capacitive Deionization
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員(中文):呂世源
胡啟章
徐盛耀
口試委員(外文):LU, SHIH-YUAN
HU, CHI-CHANG
Hsu, Sheng-Yaw
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:109032401
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:105
中文關鍵詞:超級電容器電容去離子技術氣溶膠合成法奈米粒子混成式奈米粒子氣相奈米粒子電移動度分析儀
外文關鍵詞:supercapacitoraerosol-based synthesisinverted-capacitive deionizationnanoparticlehybrid nanostructured materialsDifferential mobility analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:279
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
In this work, we demonstrate a facile approach to develop mixed-valence vanadium oxides (VOx nanoparticle) and their derived nanostructured materials, which can be used as electrode materials for supercapacitor applications and capacitive deionization (CDI) applications. Our work starts on the development of suitable synthetic and characterization methods for the fabrication of VOx nanostructures with controlled properties. In the first part of this work, a continuous aerosol-based synthetic route with in-situ mobility size characterization is developed to fabricate VOx nanoparticles (NPs). Differential mobility analysis, X-ray diffractometry, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy were employed complementarily for material characterization. Cyclic voltammetry and galvanostatic charge-discharge tests are used to evaluate the specific capacitance and charge-discharge stability of the synthesized VOx NPs. Particle size and mean valence of VOx NPs are controllable by adjusting the gas-phase synthetic conditions (atmosphere, temperature, gas flow rate). The specific capacitance of VOx NPs is shown to be proportional to the average valence of V, and the maximum specific capacitance (147.8 F/g) is achievable at an average oxidation state of 4.79 for vanadium.
In the second part of this work, we aim to develop vanadium oxide hybrid nanoparticles and study the interfacial phenomena of the hybrid nanostructured materials. Firstly, an aerosol-based synthetic approach is demonstrated for the development of vanadium oxide-carbon hybrid nanoparticles, which is used as electrode material for capacitive deionization technology. X-ray diffractometry, differential mobility analysis and field emission scanning electron microscopy along with elemental EDS analysis are employed complementarily for material characterization. Hybrid CDI cells are formed by combining vanadium oxide-carbon hybrid nanoparticles as the positive electrode and silver-carbon nanoparticle clusters as the negative electrode. The ions are stored through the charge transfer reaction between the two electrodes, which contributes to a large amount of deionization capacity and improves electrochemical stability. A remarkably high salt adsorption capacity up to 27.5 mg/g is achievable. Furthermore, the electrodes are modified by an electrochemical polymerization process of polypyrrole (PPy) to provide a protective layer for the structure of VOx-C NPC. The electrodes are successfully modified to yield salt adsorption capacity up to 49.3 mg/g and salt adsorption capacity retention is as high as 92%. This work provides a concept of using the aerosol-based synthesis with the support of complementary material characterization for the development of VOx-C NPC with high CDI performance.
In summary, this work demonstrates a prototype study of fast and continuous production of VOx NPs and their derived nanostructured materials with controlled material properties, showing promise in the tuning of cluster size, pore size and valence for the optimization of the corresponding electrochemistry performance. In addition, this work also provides an understanding of interfacial phenomena relevant to the formation of hybrid nanostructured materials and the performance in applications.
Abstract I
Table of Contents III
List of Figures V
List of Tables VIII
Chapter 1: Introduction 1
1.1 Overview of current development in electrical energy storage technologies and desalination technologies 1
1.2 Supercapacitor and capacitive deionization 3
1.2.1 Energy storage mechanism of supercapacitors [13] 3
1.2.2 Capacitive deionization 5
1.3 Vanadium oxides (VOx) nanomaterials 8
1.4 VOx Hybrid nanostructure is useful as electrode material 10
1.5 Aerosol-based synthesis and characterization 11
1.6 Scope and research objective 16
Chapter 2: Experimental Methods 20
2.1 Material 20
2.2 Material Characterization 21
2.2.1 X-Ray Diffraction (XRD) 21
2.2.2 Scanning electron microscope (SEM) 21
2.2.3 Differential Mobility Analyzer (DMA) 21
2.2.4 Specific Surface Area and Pore Volume Analyses 22
2.2.5 X-Ray Photoelectron Spectroscopy (XPS) 23
2.3 Experimental procedure 24
2.3.1 Aerosol-based synthesis of VOx nanoparticles 24
2.3.2 Aerosol-based synthesis of VOx-C nanoparticles and Ag-C-NPC 24
2.3.3 Electrode preparation for supercapacitor application 25
2.3.4 Electrochemical performance evolution 26
2.3.5 Electrode preparation for CDI application 27
2.3.6 CDI performance test 28
2.3.7 Preparation of PPy-coated electrodes 29
Chapter 3: Results and Discussions 33
3.1. Development of nanostructured mixed-valence vanadium oxides (VOx) as electrode materials for supercapacitor applications 33
3.1.1 Determination of the calcination temperature 33
3.1.2 Morphologies, crystalline and particle sizes 37
3.1.3 Analyses of the valence of the vanadium in VOx nanoparticle 42
3.1.4 Electrochemical analyses of VOx nanoparticle 53
3.2 Development of Vanadium oxide-carbon hybrid nanoparticles as electrode materials for inverted-capacitive deionization applications 58
3.2.1 Characterization of the VOx-C-NPC 58
3.2.2 Determination of potential window via electrochemical tests 64
3.2.3 Determination of the time for the charge/discharge cycles 68
3.2.4 Effect of carbon at the positive electrode on i-CDI performance 71
3.2.5 Effect of AgNP at negative electrode on i-CDI 74
3.2.6 Effect of surface passivation of VOx-C-NPC by PPy 76
3.2.7 Analyses of Salt Removal rate 85
Chapter 4: Conclusions 90
Chapter 5: Future Work 92
Chapter 6: References 96
[1] Nikolaidis P, Poullikkas A. A comparative review of electrical energy storage systems for better sustainability. Journal of Power Technologies 2017.
[2] Chalk SG, Miller JF. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. Journal of Power Sources 2006;159:73-80.
[3] Cook G, Spindler W, Grefe G. Overview of battery power regulation and storage. IEEE Transactions on Energy Conversion 1991;6:204-11.
[4] Suzuki Y, Koyanagi A, Kobayashi M, Shimada R. Novel applications of the flywheel energy storage system. Energy 2005;30:2128-43.
[5] Koshizuka N, Ishikawa F, Nasu H, Murakami M, Matsunaga K, Saito S, et al. Progress of superconducting bearing technologies for flywheel energy storage systems. Physica C: Superconductivity 2003;386:444-50.
[6] Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y. Progress in electrical energy storage system: A critical review. Progress in Natural Science 2009;19:291-312.
[7] Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Research 2009;43:2317-48.
[8] Koroneos C, Dompros A, Roumbas G. Renewable energy driven desalination systems modelling. Journal of Cleaner Production 2007;15:449-64.
[9] Farahat MA, Fath HE, El-Sharkawy II, Ookawara S, Ahmed M. Energy/exergy analysis of solar driven mechanical vapor compression desalination system with nano-filtration pretreatment. Desalination 2021;509:115078.
[10] Mohamed SK, Abuelhamd M, Allam NK, Shahat A, Ramadan M, Hassan HM. Eco-friendly facile synthesis of glucose–derived microporous carbon spheres electrodes with enhanced performance for water capacitive deionization. Desalination 2020;477:114278.
[11] Tu Y-H, Yang Y-H, Hu C-C. A highly efficient faradaic desalination system utilizing MnO2 and polypyrrole-coated titanium electrodes. Desalination 2021;498:114807.
[12] Sayed DM, El-Deab MS, Allam NK. Multi-walled vanadium oxide nanotubes modified 3D microporous bioderived carbon as novel electrodes for hybrid capacitive deionization. Separation and Purification Technology 2021;266:118597.
[13] Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 2012;41:797-828.
[14] Zavahir S, Elmakki T, Gulied M, Ahmad Z, Al-Sulaiti L, Shon HK, et al. A review on lithium recovery using electrochemical capturing systems. Desalination 2021;500:114883.
[15] Ryu T, Ryu JC, Shin J, Lee DH, Kim YH, Chung K-S. Recovery of lithium by an electrostatic field-assisted desorption process. Industrial & Engineering Chemistry Research 2013;52:13738-42.
[16] Shang X, Liu Z, Ji W, Li H. Synthesis of lithium vanadate/reduced graphene oxide with strong coupling for enhanced capacitive extraction of lithium ions. Separation and Purification Technology 2021;262:118294.
[17] Park SH, Kim JH, Moon SJ, Jung JT, Wang HH, Ali A, et al. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. Journal of Membrane Science 2020;598:117683.
[18] Battistel A, Palagonia MS, Brogioli D, La Mantia F, Trócoli R. Electrochemical methods for lithium recovery: a comprehensive and critical review. Advanced Materials 2020;32:1905440.
[19] He F, Biesheuvel P, Bazant MZ, Hatton TA. Theory of water treatment by capacitive deionization with redox active porous electrodes. Water Research 2018;132:282-91.
[20] Ahmed MA, Tewari S. Capacitive deionization: Processes, materials and state of the technology. Journal of Electroanalytical Chemistry 2018;813:178-92.
[21] Park K-H, Kwak D-H. Electrosorption and electrochemical properties of activated-carbon sheet electrode for capacitive deionization. Journal of Electroanalytical Chemistry 2014;732:66-73.
[22] Zhang C, Wang X, Wang H, Wu X, Shen J. A positive-negative alternate adsorption effect for capacitive deionization in nano-porous carbon aerogel electrodes to enhance desalination capacity. Desalination 2019;458:45-53.
[23] Wang L, Wang M, Huang Z-H, Cui T, Gui X, Kang F, et al. Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. Journal of Materials Chemistry 2011;21:18295-9.
[24] Xu X, Pan L, Liu Y, Lu T, Sun Z, Chua DH. Facile synthesis of novel graphene sponge for high performance capacitive deionization. Scientific Reports 2015;5:1-9.
[25] Cheng Y, Hao Z, Hao C, Deng Y, Li X, Li K, et al. A review of modification of carbon electrode material in capacitive deionization. RSC advances 2019;9:24401-19.
[26] Hsu C-C, Tu Y-H, Yang Y-H, Wang J-A, Hu C-C. Improved performance and long-term stability of activated carbon doped with nitrogen for capacitive deionization. Desalination 2020;481:114362.
[27] Liu Y, Nie C, Liu X, Xu X, Sun Z, Pan L. Review on carbon-based composite materials for capacitive deionization. Rsc Advances 2015;5:15205-25.
[28] Yeh C-L, Hsi H-C, Li K-C, Hou C-H. Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination 2015;367:60-8.
[29] Porada S, Zhao R, Van Der Wal A, Presser V, Biesheuvel P. Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science 2013;58:1388-442.
[30] Manuraj M, Chacko J, Unni KN, Rakhi R. Heterostructured MoS2-RuO2 nanocomposite: A promising electrode material for supercapacitors. Journal of Alloys and Compounds 2020;836:155420.
[31] Wu X, Xiong W, Chen Y, Lan D, Pu X, Zeng Y, et al. High-rate supercapacitor utilizing hydrous ruthenium dioxide nanotubes. Journal of Power Sources 2015;294:88-93.
[32] Hwang JY, El-Kady MF, Wang Y, Wang L, Shao Y, Marsh K, et al. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 2015;18:57-70.
[33] Dinh TM, Achour A, Vizireanu S, Dinescu G, Nistor L, Armstrong K, et al. Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 2014;10:288-94.
[34] Shin J, Seo JK, Yaylian R, Huang A, Meng YS. A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems. International Materials Reviews 2020;65:356-87.
[35] Hu C-C, Chang K-H. Hydrothermal Synthesis of V2O5⋅ 1.9H2O Single Crystals with Novel Electrochemical Characteristics. Electrochemical and Solid State Letters 2004;7:A400.
[36] Hu C-C, Chang K-H, Huang C-M, Li J-M. Anodic deposition of vanadium oxides for thermal-induced growth of vanadium oxide nanowires. Journal of the Electrochemical Society 2009;156:D485.
[37] Chang K-H, Hu C-C. H2V3O8 single-crystal nanobelts: Hydrothermal preparation and formation mechanism. Acta Materialia 2007;55:6192-7.
[38] Zhao C, Cao J, Yang Y, Chen W, Li J. Facile synthesis of hierarchical porous VOx@ carbon composites for supercapacitors. Journal of colloid and Interface Science 2014;427:73-9.
[39] Li J-M, Chang K-H, Hu C-C. A novel vanadium oxide deposit for the cathode of asymmetric lithium-ion supercapacitors. Electrochemistry Communications 2010;12:1800-3.
[40] Zhu J, Cao L, Wu Y, Gong Y, Liu Z, Hoster HE, et al. Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors. Nano Letters 2013;13:5408-13.
[41] Zhao D, Zheng L, Xiao Y, Wang X, Cao M. Lithium storage in microstructures of amorphous mixed‐valence vanadium oxide as anode materials. ChemSusChem 2015;8:2212-22.
[42] Lethien C, Le Bideau J, Brousse T. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy & Environmental Science 2019;12:96-115.
[43] Li H-Y, Wei C, Wang L, Zuo Q-S, Li X, Xie B. Hierarchical vanadium oxide microspheres forming from hyperbranched nanoribbons as remarkably high performance electrode materials for supercapacitors. Journal of Materials Chemistry A 2015;3:22892-901.
[44] Yu D, Zhang S, Liu D, Zhou X, Xie S, Zhang Q, et al. Effect of manganese doping on Li-ion intercalation properties of V2O5 films. Journal of Materials Chemistry 2010;20:10841-6.
[45] Zhou X, Chen Q, Wang A, Xu J, Wu S, Shen J. Bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors. ACS Applied Materials & Interfaces 2016;8:3776-83.
[46] Ding N, Feng X, Liu S, Xu J, Fang X, Lieberwirth I, et al. High capacity and excellent cyclability of vanadium (IV) oxide in lithium battery applications. Electrochemistry Communications 2009;11:538-41.
[47] Thulasi KM, Manikkoth ST, Paravannoor A, Palantavida S, Bhagiyalakshmi M, Vijayan BK. Facile synthesis of TNT-VO2 (M) nanocomposites for high performance supercapacitors. Journal of Electroanalytical Chemistry 2020;878:114644.
[48] Ganganagappa N, Siddaramanna A. One step synthesis of monoclinic VO2 (B) bundles of nanorods: Cathode for Li ion battery. Materials characterization 2012;68:58-62.
[49] Bahlawane N, Lenoble D. Vanadium oxide compounds: structure, properties, and growth from the gas phase. Chemical Vapor Deposition 2014;20:299-311.
[50] Li Z, Wang F, Wang X. Hierarchical branched vanadium oxide nanorod@ Si nanowire architecture for high performance supercapacitors. Small 2017;13:1603076.
[51] Yu M, Zeng Y, Han Y, Cheng X, Zhao W, Liang C, et al. Valence‐optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super‐long cyclic durability of 100 000 cycles. Advanced Functional Materials 2015;25:3534-40.
[52] Hao L, Wang J, Shen L, Zhu J, Ding B, Zhang X. Synthesis and electrochemical performances of mixed-valence vanadium oxide/ordered mesoporous carbon composites for supercapacitors. RSC Advances 2016;6:25056-61.
[53] Huang Z-H, Song Y, Liu X-X. Boosting operating voltage of vanadium oxide-based symmetric aqueous supercapacitor to 2 V. Chemical Engineering Journal 2019;358:1529-38.
[54] Liu R, Xu G, Li Q, Zheng S, Zheng G, Gong Z, et al. Exploring highly reversible 1.5-electron reactions (V3+/V4+/V5+) in Na3VCr(PO4)3 cathode for sodium-ion batteries. ACS Applied Materials & Interfaces 2017;9:43632-9.
[55] Chirayil T, Zavalij PY, Whittingham MS. Hydrothermal synthesis of vanadium oxides. Chemistry of Materials 1998;10:2629-40.
[56] Wee G, Soh HZ, Cheah YL, Mhaisalkar SG, Srinivasan M. Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. Journal of Materials Chemistry 2010;20:6720-5.
[57] Pinna N, Willinger M, Weiss K, Urban J, Schlögl R. Local structure of nanoscopic materials: V2O5 nanorods and nanowires. Nano Letters 2003;3:1131-4.
[58] Sato Y, Nomura T, Tanaka H, Kobayakawa K. Charge‐Discharge Characteristics of Electrolytically Prepared V2O5 as a Cathode Active Material of Lithium Secondary Battery. Journal of The Electrochemical Society 1991;138:L37.
[59] Raj AD, Pazhanivel T, Kumar PS, Mangalaraj D, Nataraj D, Ponpandian N. Self assembled V2O5 nanorods for gas sensors. Current Applied Physics 2010;10:531-7.
[60] Mai L, Xu X, Xu L, Han C, Luo Y. Vanadium oxide nanowires for Li-ion batteries. Journal of Materials Research 2011;26:2175-85.
[61] Wei D, Scherer MR, Bower C, Andrew P, Ryhänen T, Steiner U. A nanostructured electrochromic supercapacitor. Nano Letters 2012;12:1857-62.
[62] Qu Q, Shi Y, Li L, Guo W-L, Wu Y, Zhang H, et al. V2O5• 0.6 H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochemistry communications 2009;11:1325-8.
[63] Zhang Y, Zheng J, Zhao Y, Hu T, Gao Z, Meng C. Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor. Applied Surface Science 2016;377:385-93.
[64] Mu J, Wang J, Hao J, Cao P, Zhao S, Zeng W, et al. Hydrothermal synthesis and electrochemical properties of V2O5 nanomaterials with different dimensions. Ceramics International 2015;41:12626-32.
[65] Liu Y-H, Hsi H-C, Li K-C, Hou C-H. Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization. ACS Sustainable Chemistry & Engineering 2016;4:4762-70.
[66] Liu Y-H, Yu T-C, Chen Y-W, Hou C-H. Incorporating manganese dioxide in carbon nanotube–chitosan as a pseudocapacitive composite electrode for high-performance desalination. ACS Sustainable Chemistry & Engineering 2017;6:3196-205.
[67] Zou L, Morris G, Qi D. Using activated carbon electrode in electrosorptive deionisation of brackish water. Desalination 2008;225:329-40.
[68] Kim C, Lee J, Kim S, Yoon J. TiO2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization. Desalination 2014;342:70-4.
[69] Liu P-I, Chung L-C, Shao H, Liang T-M, Horng R-Y, Ma C-CM, et al. Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization. Electrochimica Acta 2013;96:173-9.
[70] Chiang M-T, Tu Y-H, Chiang H-L, Hu C-C, Tsai D-H. Raspberry-structured silver-carbon hybrid nanoparticle clusters for high-performance capacitive deionization. Desalination 2021;520:115343.
[71] O'Dwyer C, Lavayen V, Tanner DA, Newcomb SB, Benavente E, González G, et al. Reduced surfactant uptake in three dimensional assemblies of VOx nanotubes improves reversible Li+ intercalation and charge capacity. Advanced Functional Materials 2009;19:1736-45.
[72] Groult H, Le Van K, Mantoux A, Perrigaud L, Doppelt P. Study of the Li+ insertion into V2O5 films deposited by CVD onto various substrates. Journal of power sources 2007;174:312-20.
[73] Jiang H, Jia G, Hu Y, Cheng Q, Fu Y, Li C. Ultrafine V2O3 nanowire embedded in carbon hybrids with enhanced lithium storage capability. Industrial & Engineering Chemistry Research 2015;54:2960-5.
[74] Zhang Y, DeBord JR, O'Connor CJ, Haushalter RC, Clearfield A, Zubieta J. Solid‐State Coordination Chemistry: Hydrothermal Synthesis of Layered Vanadium Oxides with Interlayer Metal Coordination Complexes. Angewandte Chemie International Edition in English 1996;35:989-91.
[75] Sun X, Zhou C, Xie M, Hu T, Sun H, Xin G, et al. Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes. Chemical Communications 2014;50:10703-6.
[76] Stokes K, Geaney H, Sheehan M, Borsa D, Ryan KM. Copper silicide nanowires as hosts for amorphous Si deposition as a route to produce high capacity lithium-ion battery anodes. Nano Letters 2019;19:8829-35.
[77] Sakuda A, Ohara K, Fukuda K, Nakanishi K, Kawaguchi T, Arai H, et al. Amorphous metal polysulfides: electrode materials with unique insertion/extraction reactions. Journal of the American Chemical Society 2017;139:8796-9.
[78] Chiku M, Takeda H, Matsumura S, Higuchi E, Inoue H. Amorphous vanadium oxide/carbon composite positive electrode for rechargeable aluminum battery. ACS Applied Materials & Interfaces 2015;7:24385-9.
[79] Hsu S-Y, Lin S-C, Wang J-A, Hu C-C, Ma C-CM, Tsai D-H. Aerosol-based synthesis of silsesquioxane-graphene oxide and graphene-manganese oxide nanocomposites for high-performance asymmetric supercapacitors. Electrochimica Acta 2019;296:427-37.
[80] Chen L-T, Liao U-H, Chang J-W, Lu S-Y, Tsai D-H. Aerosol-based self-assembly of a Ag–ZnO hybrid nanoparticle cluster with mechanistic understanding for enhanced photocatalysis. Langmuir 2018;34:5030-9.
[81] Lin C-Y, Chou F-C, Tsai D-H. Mechanistic understanding of surface reduction of CuCeO hybrid nanoparticles for catalytic methane combustion. Journal of the Taiwan Institute of Chemical Engineers 2018;92:80-90.
[82] Li Y, Lai F, Zhang X, Wang H, Chen Z, He X, et al. Surface modification of Sr-doped LaMnO3 coating by spray drying on Ni-rich LiNi0.8Mn0.1Co0.1O2 cathode material for lithium-ion batteries. Journal of the Taiwan Institute of Chemical Engineers 2019;102:225-32.
[83] Wang H-L, Hsu C-Y, Wu KC, Lin Y-F, Tsai D-H. Functional nanostructured materials: Aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications. Advanced Powder Technology 2020;31:104-20.
[84] Eninger RM, Hogan Jr CJ, Biswas P, Adhikari A, Reponen T, Grinshpun SA. Electrospray versus nebulization for aerosolization and filter testing with bacteriophage particles. Aerosol Science and Technology 2009;43:298-304.
[85] Cho JS, Lee JC, Rhee SH. Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2016;104:422-30.
[86] Nandiyanto ABD, Okuyama K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Advanced Powder Technology 2011;22:1-19.
[87] Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 1999;398:223-6.
[88] Firmansyah DA, Kim S-G, Lee K-S, Zahaf R, Kim YH, Lee D. Microstructure-controlled Aerosol–Gel synthesis of ZnO quantum dots dispersed in SiO2 nanospheres. Langmuir 2012;28:2890-6.
[89] Tai J-T, Lai Y-C, Yang J-H, Ho H-C, Wang H-F, Ho R-M, et al. Quantifying nanosheet graphene oxide using electrospray-differential mobility analysis. Analytical Chemistry 2015;87:3884-9.
[90] Tai J-T, Lai C-S, Ho H-C, Yeh Y-S, Wang H-F, Ho R-M, et al. Protein–silver nanoparticle interactions to colloidal stability in acidic environments. Langmuir 2014;30:12755-64.
[91] Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews 2015;44:7484-539.
[92] Yajima A, Matsuzaki R, Saeki Y. The thermal decomposition of vanadium (III) chloride oxide and its reaction with oxygen. Bulletin of the Chemical Society of Japan 1979;52:3292-5.
[93] Yang Y, Wei W, Wang S, Huang T, Yuan M, Zhang R, et al. Suppression of Photoinduced Surface Oxidation of Vanadium Dioxide Nanostructures by Blocking Oxygen Adsorption. ACS Omega 2019;4:17735-40.
[94] Ureña-Begara F, Crunteanu A, Raskin J-P. Raman and XPS characterization of vanadium oxide thin films with temperature. Applied Surface Science 2017;403:717-27.
[95] Mendialdua J, Casanova R, Barbaux Y. XPS studies of V2O5, V6O13, VO2 and V2O3. Journal of Electron Spectroscopy and Related Phenomena 1995;71:249-61.
[96] Ouldhamadouche N, Achour A, Lucio-Porto R, Islam M, Solaymani S, Arman A, et al. Electrodes based on nano-tree-like vanadium nitride and carbon nanotubes for micro-supercapacitors. Journal of Materials Science & Technology 2018;34:976-82.
[97] Reddy IN, Sreedhar A, Reddy CV, Cho M, Kim D, Shim J. Facile synthesis and characterization of V2O5 nanobelt bundles containing plasmonic Ag for photoelectrochemical water splitting under visible light irradiation. Ceramics International 2019;45:23333-40.
[98] Manikandan R, Raj CJ, Rajesh M, Kim BC, Sim JY, Yu KH. Electrochemical behaviour of lithium, sodium and potassium ion electrolytes in a Na0.33V2O5 symmetric pseudocapacitor with high performance and high cyclic stability. ChemElectroChem 2018;5:101-11.
[99] Divya ML, Natarajan S, Lee YS, Aravindan V. Highly Perforated V2O5 Cathode with Restricted Lithiation toward Building “Rocking‐Chair” Type Cell with Graphite Anode Recovered from Spent Li‐Ion Batteries. Small 2020;16:2002624.
[100] Assresahegn BD, Brousse T, Bélanger D. Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems. Carbon 2015;92:362-81.
[101] Brousse T, Bélanger D, Long JW. To be or not to be pseudocapacitive? Journal of The Electrochemical Society 2015;162:A5185.
[102] Fan L-Q, Tu Q-M, Geng C-L, Wang Y-L, Sun S-J, Huang Y-F, et al. Improved redox-active ionic liquid-based ionogel electrolyte by introducing carbon nanotubes for application in all-solid-state supercapacitors. International Journal of Hydrogen Energy 2020;45:17131-9.
[103] Gu Y, Fan L-Q, Huang J-L, Geng C-L, Lin J-M, Huang M-L, et al. N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. Journal of Power Sources 2019;425:60-8.
[104] Zhao H, Pan L, Xing S, Luo J, Xu J. Vanadium oxides–reduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance. Journal of Power Sources 2013;222:21-31.
[105] Wada H, Nohara S, Furukawa N, Inoue H, Sugoh N, Iwasaki H, et al. Electrochemical characteristics of electric double layer capacitor using sulfonated polypropylene separator impregnated with polymer hydrogel electrolyte. Electrochimica Acta 2004;49:4871-5.
[106] Iwakura C, Wada H, Nohara S, Furukawa N, Inoue H, Morita M. New electric double layer capacitor with polymer hydrogel electrolyte. Electrochemical and Solid State Letters 2002;6:A37.
[107] Hu C-C, Hsieh C-F, Chen Y-J, Liu C-F. How to achieve the optimal performance of capacitive deionization and inverted-capacitive deionization. Desalination 2018;442:89-98.
[108] Tu Y-H, Liu C-F, Wang J-A, Hu C-C. Construction of an inverted-capacitive deionization system utilizing pseudocapacitive materials. Electrochemistry Communications 2019;104:106486.
[109] Tu Y-H, Tai Y-C, Xu J-Y, Yang Y-H, Huang H-Y, Huang J-H, et al. Highly efficient water purification devices utilizing the microfluidic electrochemical deionization technique. Desalination 2022;538:115928.
[110] Liu Q, Wang Y, Zhang Y, Xu S, Wang J. Effect of dopants on the adsorbing performance of polypyrrole/graphite electrodes for capacitive deionization process. Synthetic Metals 2012;162:655-61.
[111] Guo Z, Wang J, Liu H, Dou S. Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. Journal of Power Sources 2005;146:448-51.
[112] Chew S, Guo Z, Wang J, Chen J, Munroe P, Ng S, et al. Novel nano-silicon/polypyrrole composites for lithium storage. Electrochemistry Communications 2007;9:941-6.
[113] Chou S-L, Gao X-W, Wang J-Z, Wexler D, Wang Z-X, Chen L-Q, et al. Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. Dalton Transactions 2011;40:12801-7.
[114] Fang Y, Li T, Wang F, Zhu J. Polypyrrole-coated Mn–Fe bimetallic oxides as high stability anode for lithium-ion batteries. Journal of Materials Science: Materials in Electronics 2021;32:15190-9.
[115] Li L, Peng S, Chen H-Y, Han X, Cheng F, Srinivasan M, et al. Polypyrrole-coated hierarchical porous composites nanoarchitectures for advanced solid-state flexible hybrid devices. Nano Energy 2016;19:307-17.
[116] Qu Q, Zhu Y, Gao X, Wu Y. Core–shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Advanced Energy Materials 2012;2:950-5.
[117] Li H, Zou L. Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination. Desalination 2011;275:62-6.
[118] Lee J, Srimuk P, Aristizabal K, Kim C, Choudhury S, Nah YC, et al. Pseudocapacitive Desalination of Brackish Water and Seawater with Vanadium‐Pentoxide‐Decorated Multiwalled Carbon Nanotubes. ChemSusChem 2017;10:3611-23.
[119] Siekierka A, Bryjak M. Novel anion exchange membrane for concentration of lithium salt in hybrid capacitive deionization. Desalination 2019;452:279-89.
[120] Siekierka A, Bryjak M. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction. E3S Web of Conferences: EDP Sciences; 2017. p. 00157.
[121] Hu B, Shang X, Nie P, Zhang B, Yang J, Liu J. Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization. Journal of Colloid and Interface Science 2022;612:392-400.
[122] Su J-T, Wu Y-J, Huang C-L, Chen Y-A, Cheng H-Y, Cheng P-Y, et al. Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors. Chemical Engineering Journal 2020;396:125314.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *