帳號:guest(3.145.82.39)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):藍凱威
作者(外文):Lan, Kai-Wei
論文名稱(中文):合成與功能化聚合物包覆的硼碳氮氧納米粒子作為治療診斷劑
論文名稱(外文):Synthesis and Functionalization of Polymer-Coated Boron Carbon Oxynitride Nanoparticles as a Theranostic Agent
指導教授(中文):龔佩雲
指導教授(外文):Keng, Pei-Yuin
口試委員(中文):王子威
潘伯申
口試委員(外文):Wang, Tzu-Wei
Pan, Po-Shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:109031609
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:84
中文關鍵詞:硼中子治療奈米藥物藥物投遞正電子發射斷層掃描單光子斷層掃描生物顯影
外文關鍵詞:boron neutron capture therapynanomedicinedrug deliverypositron emission tomographysingle-photon emission computed tomographybio-imaging
相關次數:
  • 推薦推薦:0
  • 點閱點閱:62
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近十年來,癌症的發病率預計還會持續一直增加,且癌症是人類死亡的第二大原因。因此,大量的研究致力於為不同類型的癌症開發更有效的治療和診斷方法。硼中子俘獲療法 (BNCT) 是一種新興的癌症治療方法,因為它可以在熱中子照射時通過施用具有腫瘤靶向特性的硼藥物選擇性地殺死癌細胞。基於BNCT的放射生物學,高線性能量(LET)將其所有能量消散在5 - 10 μm的距離內,大約是單個細胞的大小。因此,高LET粒子不會損害鄰近的健康細胞。與傳統放射治療相比,BNCT治療可以成為治療無效腫瘤和復發性癌症的一種替代和有效的治療方法,其治療指數高,對患者的副作用最小。雖然用於癌症治療的BNCT是一種很有前途的靶向放射治療,但在成為癌症的標準治療方法之前仍存在一些挑戰。BNCT的一個缺點是BNCT治療後癌症的復發。在BNCT治療後,有幾個挑戰會導致癌症復發。一個主要挑戰是將高負載的10B藥物專門輸送到靶向腫瘤部位。 BPA-果糖已被日本及美國食品藥品監督管理 (FDA) 批准用於臨床治療。此外,由於細胞膜外的BPA濃度梯度的降低,BPA的小分子大小很容易透過L型氨基酸轉運蛋白 (LAT-1) 轉運到細胞內,從而導致血液和其他重要器官中的10B高積累。因此,迫切需要開發一種更有效的BNCT硼藥物。另一方面,對治療性造影劑和影像造影劑的多功能癌症藥物的研究是癌症治療的重要技術進步,使癌症患者的治療、診斷和預後成為可能。在此,我們研究了硼碳氮氧納米粒子 (BCNO NPs) 的合成和功能化,該納米粒子之前由我們的實驗室開發為一種含硼藥物。在本碩士論文中,開發了一種模塊化的合成方案,將大環螯合劑(例如:DOTA)綴合到生物相容性聚合物上,然後在BCNO NPs表面進行功能化。生物相容性聚合物塗層顯著降低了由BCNO納米顆粒引起的生物毒性。此外,DOTA共軛聚合物能夠螯合各種放射性同位素,用於放射治療和成像。例如,可以通過正電子發射斷層掃描 (PET) 或單光子發射計算機斷層掃描 (SPECT) 系統地跟踪標記有 DOTA/放射性金屬複合物的納米藥物。腫瘤和器官內的生物分佈或放射性核素標記的BCNO納米顆粒可用於評估新硼藥物在體內應用的藥代動力學和潛在毒性。因此,非侵入性分子成像可以幫助研究人員研究藥物積累、生物分佈和腫瘤的靶向特異性,從而有效地將新的硼藥物應用於臨床。
The incidence of cancer has been increasing for around near a decade and is projected to continue. Cancer is the second cause of human death [1]. Therefore, significant research effort is devoted to the development of more effective therapies and diagnostics for different types of cancer. Boron neutron capture therapy (BNCT) is an emerging cancer treatment method because it can selectively kill cancer cells by administering a boron drug with tumor-targeting properties when exposed to thermal neutron irradiation. Based on the radiobiology of BNCT, the high linear energy (LET) dissipates all its energy within 5 - 10 μm in distance, which is about the size of a single cell. As a result, the high LET particles will not damage the neighboring healthy cells. Thus, BNCT treatment could be an alternative and effective treatment for inoperative tumors and recurrent cancer with high therapeutic indexes and minimal side effects for the patients compared to conventional radiation therapy. While BNCT for cancer treatment is a promising targeted radiation therapy, several challenges remained before it can become a standard treatment for a few selected cancers. The first downfall of BNCT is cancer recurrent after BNCT treatment. There are several challenges leading to cancer recurrent after BNCT treatment. One of major challenges is delivering a high loading of 10B drug specifically to the targeted tumor site. BPA-fructose has been approved by Japan and the Food and Drug Administration (FDA) and for clinical treatment. Because of the small molecular size of BPA readily transported across the cell membrane by L-type amino acid transporter (LAT-1) in response to a reduction in the concentration gradient of BPA across the extracellular membrane, resulting in a high 10B accumulation in the blood and other vital organs. Thus, there is an immense need to develop a more effective boron drug for BNCT. On the other hand, research in cancer drugs that carries both therapeutic and imaging contrast agents, which enable treatment, diagnosis, and prognosis in cancer patients, is an important technological progress in cancer treatment. Herein, we investigate the synthesis and functionalization of boron carbon oxynitride nanoparticles (BCNO NPs) which were previously developed by our laboratory as a potent boron drug. In this Master thesis, a modular synthetic protocol was developed in conjugating a macrocyclic chelator (ex: DOTA) onto a biocompatible polymer, followed by functionalizing onto the surface of the BCNO NPs. The biocompatible polymer coating significantly reduces the biological toxicity caused by the BCNO nanoparticles. Moreover, the DOTA-conjugated polymer enabled the chelation of a variety of radioisotopes for both radiotherapy and imaging. For example, nanodrugs tagged with DOTA/radiometal complex can be systematically tracked via positron emission tomography (PET) or single-photon emission computed tomography (SPECT). Bio-distribution or radionuclide-tagged BCNO nanoparticles within tumors and organs can be used to evaluate the pharmacokinetics and potential toxicity of the new boron drug for in vivo application. As a result, non-invasive molecular imaging could facilitate researchers to first investigate the drug accumulation at the disease site, the biodistribution, and the tumor targeting specificity towards translating a new boron drugs to the clinic more effectively.
Table of Content
Abstract i
摘要 iv
Acknowledgment vi
Table of Content vii
Figure and Table ix
Chapter 1 Introduction 1
1.1 Executive summary 1
Chapter 2 Literature Review 5
2.1 Boron neutron capture therapy (BNCT) 5
2.2 Drug delivery of BNCT 10
2.2.1 Evolution of BNCT boron agent 10
2.2.2 Cellular uptake of nanoparticles 15
2.2.3 Boron carbon oxynitride nanoparticles (BCNO NPs) 19
2.3 Medical imaging 23
Chapter 3 Materials, Instruments, and Experiments 30
3.1 Materials and instruments 31
3.2 PEG-DOTA@BCNO preparation 33
3.2.1 BCNO preparation 33
3.2.2 PEG-CCA & PEG-EDA synthesis 33
3.3.3 PEG-DOTA synthesis 34
3.3.4 Functionalized BCNO with PEG-DOTA 34
3.3 In vitro assay 35
3.3.1 Cell viability 35
3.3.2 Cell uptake 37
3.3.3 Cellular BNCT treatment 37
Chapter 4 Results and Discussion 40
4.1 Polymer Synthesis and Characterization 40
4.1.1 Polyethylene glycol - chloro acetyl chloride (PEG-CCA) & Polyethylene glycol - ethylene diamine (PEG-EDA) characterization 40
4.1.2 DOTA quantitation 44
4.2 Ligand exchange BCNO with PEG-DOTA 47
4.2.1 bare BCNO characterization 47
4.2.2 PEG-DOTA@BCNO characterization 54
4.3 In vitro assay against triple negative breast cancer cell 57
4.3.1 Cell viability 57
4.3.2 Boron uptake 59
4.3.2 In vitro BNCT treatment 63
Chapter 5 Conclusion 65
Chapter 6 Prospective 68
Reference 71

[1] Ritchie H, Roser M. Causes of death. Our World in Data 2018.
[2] Chien LC, Chiang CW, Lao CC, Lin Y-I, Lin H-W, Keng PY. Boron Carbon Oxynitride as a Novel Metal-Free Photocatalyst. Nanoscale Research Letters 2021;16:176. https://doi.org/10.1186/s11671-021-03629-5.
[3] Gupta BK, Kumar P, Kedawat G, Kanika, Vithayathil SA, Gangwar AK, et al. Tunable luminescence from two dimensional BCNO nanophosphor for high-contrast cellular imaging. RSC Adv 2017;7:41486–94. https://doi.org/10.1039/C7RA08306H.
[4] Ash C, Dubec M, Donne K, Bashford T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers in Medical Science 2017;32. https://doi.org/10.1007/s10103-017-2317-4.
[5] Chiang C-W, Chien Y-C, Yu W-J, Ho C-Y, Wang C-Y, Wang T-W, et al. Polymer-Coated Nanoparticles for Therapeutic and Diagnostic Non-10B Enriched Polymer-Coated Boron Carbon Oxynitride (BCNO) Nanoparticles as Potent BNCT Drug. Nanomaterials 2021;11:2936. https://doi.org/10.3390/nano11112936.
[6] Nedunchezhian K, Aswath N, Thiruppathy M, Thirugnanamurthy S. Boron Neutron Capture Therapy - A Literature Review. J Clin Diagn Res 2016;10:ZE01–4. https://doi.org/10.7860/JCDR/2016/19890.9024.
[7] Aihara T, Morita N, Kamitani N, Kumada H, Ono K, Hiratsuka J, et al. BNCT for advanced or recurrent head and neck cancer. Appl Radiat Isot 2014;88:12–5. https://doi.org/10.1016/j.apradiso.2014.04.007.
[8] Fukuda H. Boron Neutron Capture Therapy (BNCT) for Cutaneous Malignant Melanoma Using 10B-p-Boronophenylalanine (BPA) with Special Reference to the Radiobiological Basis and Clinical Results. Cells 2021;10:2881. https://doi.org/10.3390/cells10112881.
[9] Lan T-L, Chou F-I, Lin K-H, Pan P-S, Lee J-C, Huang W-S, et al. Using salvage Boron Neutron Capture Therapy (BNCT) for recurrent malignant brain tumors in Taiwan. Appl Radiat Isot 2020;160:109105. https://doi.org/10.1016/j.apradiso.2020.109105.
[10] Dymova MA, Taskaev SY, Richter VA, Kuligina EV. Boron neutron capture therapy: Current status and future perspectives. Cancer Communications 2020;40:406–21. https://doi.org/10.1002/cac2.12089.
[11] Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature 2009;461:1071–8. https://doi.org/10.1038/nature08467.
[12] Maitz CA, Khan AA, Kueffer PJ, Brockman JD, Dixson J, Jalisatgi SS, et al. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models. Transl Oncol 2017;10:686–92. https://doi.org/10.1016/j.tranon.2017.05.003.
[13] He H, Li J, Jiang P, Tian S, Wang H, Fan R, et al. The basis and advances in clinical application of boron neutron capture therapy. Radiation Oncology 2021;16:216. https://doi.org/10.1186/s13014-021-01939-7.
[14] Baskar R, Lee KA, Yeo R, Yeoh K-W. Cancer and Radiation Therapy: Current Advances and Future Directions. Int J Med Sci 2012;9:193–9. https://doi.org/10.7150/ijms.3635.
[15] Alberti D, Michelotti A, Lanfranco A, Protti N, Altieri S, Deagostino A, et al. In vitro and in vivo BNCT investigations using a carborane containing sulfonamide targeting CAIX epitopes on malignant pleural mesothelioma and breast cancer cells. Sci Rep 2020;10:19274. https://doi.org/10.1038/s41598-020-76370-1.
[16] Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun 2018;38:1–7. https://doi.org/10.1186/s40880-018-0280-5.
[17] Pitto-Barry A. Polymers and boron neutron capture therapy (BNCT): a potent combination. Polymer Chemistry 2021;12:2035–44. https://doi.org/10.1039/D0PY01392G.
[18] Wang S, Zhang Z, Miao L, Li Y. Boron Neutron Capture Therapy: Current Status and Challenges. Frontiers in Oncology 2022;12.
[19] Liu Y-WH, Chang C-T, Yeh L-Y, Wang L-W, Lin T-Y. BNCT treatment planning for superficial and deep-seated tumors: Experience from clinical trial of recurrent head and neck cancer at THOR. Applied Radiation and Isotopes 2015;106:121–4. https://doi.org/10.1016/j.apradiso.2015.08.002.
[20] Wang L-W, Chen Y-W, Ho C-Y, Hsueh Liu Y-W, Chou F-I, Liu Y-H, et al. Fractionated Boron Neutron Capture Therapy in Locally Recurrent Head and Neck Cancer: A Prospective Phase I/II Trial. International Journal of Radiation Oncology*Biology*Physics 2016;95:396–403. https://doi.org/10.1016/j.ijrobp.2016.02.028.
[21] Chiang N-J, Chen L-T, Tsai C-R, Chang JS. The epidemiology of gastrointestinal stromal tumors in Taiwan, 1998–2008: a nation-wide cancer registry-based study. BMC Cancer 2014;14:102. https://doi.org/10.1186/1471-2407-14-102.
[22] Liu Y-WH, Huang TT, Jiang SH, Liu HM. Renovation of epithermal neutron beam for BNCT at THOR. Appl Radiat Isot 2004;61:1039–43. https://doi.org/10.1016/j.apradiso.2004.05.042.
[23] Wang L-W, Liu Y-WH, Chou F-I, Jiang S-H. Clinical trials for treating recurrent head and neck cancer with boron neutron capture therapy using the Tsing-Hua Open Pool Reactor. Cancer Communications 2018;38:37. https://doi.org/10.1186/s40880-018-0295-y.
[24] Malouff TD, Seneviratne DS, Ebner DK, Stross WC, Waddle MR, Trifiletti DM, et al. Boron Neutron Capture Therapy: A Review of Clinical Applications. Front Oncol 2021;11:601820. https://doi.org/10.3389/fonc.2021.601820.
[25] Fukuda H. Response of Normal Tissues to Boron Neutron Capture Therapy (BNCT) with 10B-Borocaptate Sodium (BSH) and 10B-Paraboronophenylalanine (BPA). Cells 2021;10:2883. https://doi.org/10.3390/cells10112883.
[26] Miyatake S-I, Kawabata S, Kajimoto Y, Aoki A, Yokoyama K, Yamada M, et al. Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: An efficacy study based on findings on neuroimages. Journal of Neurosurgery 2005;103:1000–9. https://doi.org/10.3171/jns.2005.103.6.1000.
[27] Yamamoto T, Matsumura A, Nakai K, Shibata Y, Endo K, Sakurai F, et al. Current clinical results of the Tsukuba BNCT trial. Applied Radiation and Isotopes 2004;61:1089–93. https://doi.org/10.1016/j.apradiso.2004.05.010.
[28] Henriksson R, Capala J, Michanek A, Lindahl S-Å, Salford LG, Franzén L, et al. Boron neutron capture therapy (BNCT) for glioblastoma multiforme: A phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA). Radiotherapy and Oncology 2008;88:183–91. https://doi.org/10.1016/j.radonc.2006.04.015.
[29] Kuthala N, Vankayala R, Li Y-N, Chiang C-S, Hwang KC. Engineering Novel Targeted Boron-10-Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging-Guided Boron Neutron Capture Therapy. Advanced Materials 2017;29:1700850. https://doi.org/10.1002/adma.201700850.
[30] Hu K, Yang Z, Zhang L, Xie L, Wang L, Xu H, et al. Boron agents for neutron capture therapy. Coordination Chemistry Reviews 2020;405:213139. https://doi.org/10.1016/j.ccr.2019.213139.
[31] Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond) 2018;38:35. https://doi.org/10.1186/s40880-018-0299-7.
[32] Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Materials Today Communications 2020;25:101692. https://doi.org/10.1016/j.mtcomm.2020.101692.
[33] Skwierawska D, Balcerzyk M, Lopez-Valverde JA, Leal A. Physical bases of Boron Neutron Capture Therapy, Dosimetry, and Its Mechanisms of Action - Critical Overview of the Literature 2021. https://doi.org/10.20944/preprints202109.0453.v1.
[34] Yokoyama K, Miyatake S-I, Kajimoto Y, Kawabata S, Doi A, Yoshida T, et al. Pharmacokinetic study of BSH and BPA in simultaneous use for BNCT. J Neurooncol 2006;78:227–32. https://doi.org/10.1007/s11060-005-9099-4.
[35] Detta A, Cruickshank GS. L-amino acid transporter-1 and boronophenylalanine-based boron neutron capture therapy of human brain tumors. Cancer Res 2009;69:2126–32. https://doi.org/10.1158/0008-5472.CAN-08-2345.
[36] Puris E, Gynther M, Auriola S, Huttunen KM. L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res 2020;37:88. https://doi.org/10.1007/s11095-020-02826-8.
[37] Ichikawa H, Taniguchi E, Fujimoto T, Fukumori Y. Biodistribution of BPA and BSH after single, repeated and simultaneous administrations for neutron-capture therapy of cancer. Applied Radiation and Isotopes : Including Data, Instrumentation and Methods for Use in Agriculture, Industry and Medicine 2009;67:S111-4. https://doi.org/10.1016/j.apradiso.2009.03.026.
[38] Li J, Sun Q, Lu C, Xiao H, Guo Z, Duan D, et al. Boron encapsulated in a liposome can be used for combinational neutron capture therapy. Nat Commun 2022;13:2143. https://doi.org/10.1038/s41467-022-29780-w.
[39] Kueffer PJ, Maitz CA, Khan AA, Schuster SA, Shlyakhtina NI, Jalisatgi SS, et al. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes. Proc Natl Acad Sci U S A 2013;110:6512–7. https://doi.org/10.1073/pnas.1303437110.
[40] Hawthorne MF, Feakes DA, Shelly KJ. Liposome compositions for boron neutron capture therapy and methods thereof. US5888473A, 1999.
[41] Gao Z, Horiguchi Y, Nakai K, Matsumura A, Suzuki M, Ono K, et al. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials 2016;104:201–12. https://doi.org/10.1016/j.biomaterials.2016.06.046.
[42] Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide-Drug Conjugates and Their Targets in Advanced Cancer Therapies. Frontiers in Chemistry 2020;8.
[43] Wu XL, Kim JH, Koo H, Bae SM, Shin H, Kim MS, et al. Tumor-Targeting Peptide Conjugated pH-Responsive Micelles as a Potential Drug Carrier for Cancer Therapy. Bioconjugate Chem 2010;21:208–13. https://doi.org/10.1021/bc9005283.
[44] Pulagam KR, Gona KB, Gómez-Vallejo V, Meijer J, Zilberfain C, Estrela-Lopis I, et al. Gold Nanoparticles as Boron Carriers for Boron Neutron Capture Therapy: Synthesis, Radiolabelling and In Vivo Evaluation. Molecules 2019;24:3609. https://doi.org/10.3390/molecules24193609.
[45] Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, et al. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2019;1871:419–33. https://doi.org/10.1016/j.bbcan.2019.04.006.
[46] Xiong H, Wei X, Zhou D, Qi Y, Xie Z, Chen X, et al. Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy. Bioconjugate Chem 2016;27:2214–23. https://doi.org/10.1021/acs.bioconjchem.6b00454.
[47] Sumitani S, Oishi M, Yaguchi T, Murotani H, Horiguchi Y, Suzuki M, et al. Pharmacokinetics of core-polymerized, boron-conjugated micelles designed for boron neutron capture therapy for cancer. Biomaterials 2012;33:3568–77. https://doi.org/10.1016/j.biomaterials.2012.01.039.
[48] Varela-Moreira A, Shi Y, Fens MHAM, Lammers T, Hennink WE, Schiffelers RM. Clinical application of polymeric micelles for the treatment of cancer. Mater Chem Front 2017;1:1485–501. https://doi.org/10.1039/C6QM00289G.
[49] Sun T, Li Y, Huang Y, Zhang Z, Yang W, Du Z, et al. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy. Oncotarget 2016;7:43095–108. https://doi.org/10.18632/oncotarget.9355.
[50] Zhu Y, Hosmane NS. Nanostructured boron compounds for cancer therapy. Pure and Applied Chemistry 2018;90:653–63. https://doi.org/10.1515/pac-2017-0903.
[51] Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews 2004;56:1649–59. https://doi.org/10.1016/j.addr.2004.02.014.
[52] Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres M del P, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology 2018;16:71. https://doi.org/10.1186/s12951-018-0392-8.
[53] Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 2005;172:1487–90. https://doi.org/10.1164/rccm.200504-613PP.
[54] Challenging paradigms in tumour drug delivery. Nat Mater 2020;19:477–477. https://doi.org/10.1038/s41563-020-0676-x.
[55] Shi Y, Li J, Zhang Z, Duan D, Zhang Z, Liu H, et al. Tracing Boron with Fluorescence and Positron Emission Tomography Imaging of Boronated Porphyrin Nanocomplex for Imaging-Guided Boron Neutron Capture Therapy. ACS Applied Materials and Interfaces 2018;10:43387–95. https://doi.org/10.1021/acsami.8b14682.
[56] Alberti D, Protti N, Toppino A, Deagostino A, Lanzardo S, Bortolussi S, et al. A theranostic approach based on the use of a dual boron/Gd agent to improve the efficacy of Boron Neutron Capture Therapy in the lung cancer treatment. Nanomedicine 2015;11:741–50. https://doi.org/10.1016/j.nano.2014.12.004.
[57] Mi P, Yanagie H, Dewi N, Yen H-C, Liu X, Suzuki M, et al. Block copolymer-boron cluster conjugate for effective boron neutron capture therapy of solid tumors. J Control Release 2017;254:1–9. https://doi.org/10.1016/j.jconrel.2017.03.036.
[58] Yinghuai Z, Peng AT, Carpenter K, Maguire JA, Hosmane NS, Takagaki M. Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to boron neutron capture therapy drug delivery. Journal of the American Chemical Society 2005;127:9875–80. https://doi.org/10.1021/ja0517116.
[59] Koganei H, Ueno M, Tachikawa S, Tasaki L, Ban HS, Suzuki M, et al. Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy of cancers. Bioconjug Chem 2013;24:124–32. https://doi.org/10.1021/bc300527n.
[60] Maruyama K, Ishida O, Kasaoka S, Takizawa T, Utoguchi N, Shinohara A, et al. Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). Journal of Controlled Release 2004;98:195–207. https://doi.org/10.1016/j.jconrel.2004.04.018.
[61] Feng B, Tomizawa K, Michiue H, Miyatake S -i., Han X-J, Fujimura A, et al. Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials 2009;30:1746–55. https://doi.org/10.1016/j.biomaterials.2008.12.010.
[62] Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 2017;46:4218–44. https://doi.org/10.1039/C6CS00636A.
[63] McMahon HT, Gallop JL. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 2005;438:590–6. https://doi.org/10.1038/nature04396.
[64] Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian Journal of Pharmaceutical Sciences 2013;8:1–10. https://doi.org/10.1016/j.ajps.2013.07.001.
[65] Oh N, Park J-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 2014;9:51–63. https://doi.org/10.2147/IJN.S26592.
[66] Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev n.d.;50:5397–434. https://doi.org/10.1039/d0cs01127d.
[67] Liu D, Mori A, Huang L. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta 1992;1104:95–101. https://doi.org/10.1016/0005-2736(92)90136-a.
[68] Zhang Y-N, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J Control Release 2016;240:332–48. https://doi.org/10.1016/j.jconrel.2016.01.020.
[69] Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015;33:941–51. https://doi.org/10.1038/nbt.3330.
[70] Sylvestre M, Crane CA, Pun SH. Progress on Modulating Tumor-Associated Macrophages with Biomaterials. Advanced Materials 2020;32:1902007. https://doi.org/10.1002/adma.201902007.
[71] Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate. Acc Chem Res 2013;46:622–31. https://doi.org/10.1021/ar300031y.
[72] Li Y, Gu N. Thermodynamics of Charged Nanoparticle Adsorption on Charge-Neutral Membranes: A Simulation Study. J Phys Chem B 2010;114:2749–54. https://doi.org/10.1021/jp904550b.
[73] Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proceedings of the National Academy of Sciences 2006;103:4930–4. https://doi.org/10.1073/pnas.0600997103.
[74] Panzarini E, Mariano S, Carata E, Mura F, Rossi M, Dini L. Intracellular Transport of Silver and Gold Nanoparticles and Biological Responses: An Update. International Journal of Molecular Sciences 2018;19:1305. https://doi.org/10.3390/ijms19051305.
[75] Dudley AC. Tumor Endothelial Cells. Cold Spring Harb Perspect Med 2012;2:a006536. https://doi.org/10.1101/cshperspect.a006536.
[76] Wu J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J Pers Med 2021;11:771. https://doi.org/10.3390/jpm11080771.
[77] Heldin C-H, Rubin K, Pietras K, Östman A. High interstitial fluid pressure — an obstacle in cancer therapy. Nat Rev Cancer 2004;4:806–13. https://doi.org/10.1038/nrc1456.
[78] Huang D, Sun L, Huang L, Chen Y. Nanodrug Delivery Systems Modulate Tumor Vessels to Increase the Enhanced Permeability and Retention Effect. Journal of Personalized Medicine 2021;11:124. https://doi.org/10.3390/jpm11020124.
[79] Kooijmans S a. A, Fliervoet L a. L, van der Meel R, Fens MH a. M, Heijnen HFG, van Bergen En Henegouwen PMP, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release 2016;224:77–85. https://doi.org/10.1016/j.jconrel.2016.01.009.
[80] Nichols JW, Bae YH. EPR: Evidence and fallacy. Journal of Controlled Release 2014;190:451–64. https://doi.org/10.1016/j.jconrel.2014.03.057.
[81] Wu C-Y, Hsieh H-H, Chang T-Y, Lin J-J, Wu C-C, Hsu M-H, et al. Development of MRI-Detectable Boron-Containing Gold Nanoparticle-Encapsulated Biodegradable Polymeric Matrix for Boron Neutron Capture Therapy (BNCT). Int J Mol Sci 2021;22:8050. https://doi.org/10.3390/ijms22158050.
[82] Xie X, Zhang Y, Li F, Lv T, Li Z, Chen H, et al. Challenges and Opportunities from Basic Cancer Biology for Nanomedicine for Targeted Drug Delivery. Current Cancer Drug Targets 2018;18. https://doi.org/10.2174/1568009618666180628160211.
[83] Torrice M. Does Nanomedicine Have a Delivery Problem? ACS Cent Sci 2016;2:434–7. https://doi.org/10.1021/acscentsci.6b00190.
[84] Ma Y, Liu H, Wu J, Yuan L, Wang Y, Du X, et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environmental Research 2019;176:108575. https://doi.org/10.1016/j.envres.2019.108575.
[85] Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021;11:571. https://doi.org/10.3390/jpm11060571.
[86] Ogi T, Kaihatsu Y, Iskandar F, Wang W-N, Okuyama K. Facile Synthesis of New Full-Color-Emitting BCNO Phosphors with High Quantum Efficiency. Advanced Materials 2008;20:3235–8. https://doi.org/10.1002/adma.200702551.
[87] Wang W-N, Ogi T, Kaihatsu Y, Iskandar F, Okuyama K. Novel rare-earth-free tunable-color-emitting BCNO phosphors. J Mater Chem 2011;21:5183–9. https://doi.org/10.1039/C0JM02215B.
[88] Sekar S, Bhat SV. 2D-BCNO with Eu3+: partial energy transfer and direct natural white light for LEDs. New J Chem 2019;43:12431–9. https://doi.org/10.1039/C9NJ02280E.
[89] Fang S, Li G, Zhao M, Zhang Y, Yang L, Li L. Non-rare earth containing BCNO phosphors: Chemical activation for LED application. Journal of Luminescence 2017;192:428–35. https://doi.org/10.1016/j.jlumin.2017.07.021.
[90] Jia X, Li L, Yu J, Gao X, Yang X, Lu Z, et al. Facile synthesis of BCNO quantum dots with applications for ion detection, chemosensor and fingerprint identification. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018;203:214–21. https://doi.org/10.1016/j.saa.2018.05.099.
[91] Kanodarwala FK, Moret S, Spindler X, Lennard C, Roux C. Nanoparticles used for fingermark detection—A comprehensive review. WIREs Forensic Science 2019;1:e1341. https://doi.org/10.1002/wfs2.1341.
[92] Liu F, Lei T, Zhang Y, Wang Y, He Y. A BCNO QDs-MnO2 nanosheets based fluorescence “off-on-off” and colorimetric sensor with smartphone detector for the detection of organophosphorus pesticides. Analytica Chimica Acta 2021;1184:339026. https://doi.org/10.1016/j.aca.2021.339026.
[93] Wang W-N, Widiyastuti W, Ogi T, Lenggoro IW, Okuyama K. Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicrometer Phosphors. Chem Mater 2007;19:1723–30. https://doi.org/10.1021/cm062887p.
[94] Liu X, Ye S, Qiao Y, Dong G, Zhang Q, Qiu J. Facile synthetic strategy for efficient and multi-color fluorescent BCNO nanocrystals. Chem Commun 2009:4073–5. https://doi.org/10.1039/B904567H.
[95] Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P. Does Nanoparticle Activity Depend upon Size and Crystal Phase? Nanotoxicology 2008;2:33–42. https://doi.org/10.1080/17435390701882478.
[96] Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2016;1863:2977–92. https://doi.org/10.1016/j.bbamcr.2016.09.012.
[97] Li A, Luehmann HP, Sun G, Samarajeewa S, Zou J, Zhang S, et al. Synthesis and In Vivo Pharmacokinetic Evaluation of Degradable Shell Cross-Linked Polymer Nanoparticles with Poly(carboxybetaine) versus Poly(ethylene glycol) Surface-Grafted Coatings. ACS Nano 2012;6:8970–82. https://doi.org/10.1021/nn303030t.
[98] Rahme K, Dagher N. Chemistry Routes for Copolymer Synthesis Containing PEG for Targeting, Imaging, and Drug Delivery Purposes. Pharmaceutics 2019;11:327. https://doi.org/10.3390/pharmaceutics11070327.
[99] Jv F. New technologies for human cancer imaging. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology 2008;26. https://doi.org/10.1200/JCO.2007.14.3065.
[100] Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2002;2:11–8. https://doi.org/10.1038/nrc701.
[101] Wang RK, Tuchin VV. Enhance light penetration in tissue for high resolution optical imaging techniques by the use of biocompatible chemical agents. J Xray Sci Technol 2002;10:167–76.
[102] Höltke C, Faust A. Molecular imaging of integrins in oncology. Reports in Medical Imaging 2017;Volume 10:17–30. https://doi.org/10.2147/RMI.S96767.
[103] Wei J, Pei S, Zhu X. Comparison of (18)F-FDG PET/CT, MRI and SPECT in the diagnosis of local residual/recurrent nasopharyngeal carcinoma: A meta-analysis. Oral Oncology 2016;52:11–7. https://doi.org/10.1016/j.oraloncology.2015.10.010.
[104] Jensen P, Feng L, Law I, Svarer C, Knudsen GM, Mikkelsen JD, et al. TSPO Imaging in Glioblastoma Multiforme: A Direct Comparison Between 123I-CLINDE SPECT, 18F-FET PET, and Gadolinium-Enhanced MR Imaging. Journal of Nuclear Medicine 2015;56:1386–90. https://doi.org/10.2967/jnumed.115.158998.
[105] L. Pimlott S, Sutherland A. Molecular tracers for the PET and SPECT imaging of disease. Chemical Society Reviews 2011;40:149–62. https://doi.org/10.1039/B922628C.
[106] Zhang X, Zhao M, Wen L, Wu M, Yang Y, Zhang Y, et al. Sequential SPECT and NIR-II imaging of tumor and sentinel lymph node metastasis for diagnosis and image-guided surgery. Biomater Sci 2021;9:3069–75. https://doi.org/10.1039/D1BM00088H.
[107] Shukla AK, Kumar U. Positron emission tomography: An overview. J Med Phys 2006;31:13–21. https://doi.org/10.4103/0971-6203.25665.
[108] Tong S, Alessio AM, Kinahan PE. Image reconstruction for PET/CT scanners: past achievements and future challenges. Imaging Med 2010;2:529–45. https://doi.org/10.2217/iim.10.49.
[109] Balcerzyk M, De-Miguel M, Guerrero C, Fernandez B. Quantification of Boron Compound Concentration for BNCT Using Positron Emission Tomography. Cells 2020;9:2084. https://doi.org/10.3390/cells9092084.
[110] Shangguan C, Gan G, Zhang J, Wu J, Miao Y, Zhang M, et al. Cancer-associated fibroblasts enhance tumor 18F-FDG uptake and contribute to the intratumor heterogeneity of PET-CT. Theranostics 2018;8:1376–88. https://doi.org/10.7150/thno.22717.
[111] Pauwels EKJ, Ribeiro MJ, Stoot JHMB, McCready VR, Bourguignon M, Mazière B. FDG Accumulation and Tumor Biology. Nuclear Medicine and Biology 1998;25:317–22. https://doi.org/10.1016/S0969-8051(97)00226-6.
[112] Honka M-J, Rebelos E, Malaspina S, Nuutila P. Hepatic Positron Emission Tomography: Applications in Metabolism, Haemodynamics and Cancer. Metabolites 2022;12:321. https://doi.org/10.3390/metabo12040321.
[113] Rahman W, Wale D, Viglianti B, Townsend D, Manganaro M, Gross M, et al. The impact of infection and inflammation in oncologic 18F-FDG PET/CT imaging. Biomedicine & Pharmacotherapy 2019;117:109168. https://doi.org/10.1016/j.biopha.2019.109168.
[114] Bockisch A, Freudenberg LS, Schmidt D, Kuwert T. Hybrid Imaging by SPECT/CT and PET/CT: Proven Outcomes in Cancer Imaging. Seminars in Nuclear Medicine 2009;39:276–89. https://doi.org/10.1053/j.semnuclmed.2009.03.003.
[115] Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol 2015;5:246–55. https://doi.org/10.1016/j.jceh.2015.08.001.
[116] Lin EC. Radiation Risk From Medical Imaging. Mayo Clin Proc 2010;85:1142–6. https://doi.org/10.4065/mcp.2010.0260.
[117] Mayerhoefer ME, Prosch H, Beer L, Tamandl D, Beyer T, Hoeller C, et al. PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. Eur J Nucl Med Mol Imaging 2020;47:51–60. https://doi.org/10.1007/s00259-019-04452-y.
[118] Almuhaideb A, Papathanasiou N, Bomanji J. 18F-FDG PET/CT Imaging In Oncology. Ann Saudi Med 2011;31:3–13. https://doi.org/10.4103/0256-4947.75771.
[119] de Rosales RTM. Potential clinical applications of bimodal PET-MRI or SPECT-MRI agents. Journal of Labelled Compounds and Radiopharmaceuticals 2014;57:298–303. https://doi.org/10.1002/jlcr.3154.
[120] Wu T-J, Chiu H-Y, Yu J, Cautela MP, Sarmento B, das Neves J, et al. Chapter 1 - Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. In: Uskoković V, Uskoković DP, editors. Nanotechnologies in Preventive and Regenerative Medicine, Elsevier; 2018, p. 1–92. https://doi.org/10.1016/B978-0-323-48063-5.00001-0.
[121] Boss A, Stegger L, Bisdas S, Kolb A, Schwenzer N, Pfister M, et al. Feasibility of simultaneous PET/MR imaging in the head and upper neck area. European Radiology 2011;21:1439–46. https://doi.org/10.1007/s00330-011-2072-z.
[122] Yura Y, Fujita Y. Boron neutron capture therapy as a novel modality of radiotherapy for oral cancer: Principle and antitumor effect. Oral Science International 2013;10:9–14. https://doi.org/10.1016/S1348-8643(12)00046-8.
[123] Fukumitsu N, Matsumoto Y. Development of an Imaging Technique for Boron Neutron Capture Therapy. Cells 2021;10:2135. https://doi.org/10.3390/cells10082135.
[124] Mishima Y, Imahori Y, Honda C, Hiratsuka J, Ueda S, Ido T. In vivo diagnosis of human malignant melanoma with positron emission tomography using specific melanoma-seeking 18F-DOPA analogue. J Neurooncol 1997;33:163–9. https://doi.org/10.1023/a:1005746020350.
[125] Nichols TL, Kabalka GW, Miller LF, Khan MK, Smith GT. Improved treatment planning for boron neutron capture therapy for glioblastoma multiforme using fluorine-18 labeled boronophenylalanine and positron emission tomography. Med Phys 2002;29:2351–8. https://doi.org/10.1118/1.1507780.
[126] icart L, Ramón J, Souza Jr F. PLA-b-PEG/magnetite hyperthermic agent prepared by Ugi four component condensation. Express Polymer Letters 2015;10:188–203. https://doi.org/10.3144/expresspolymlett.2016.18.
[127] A. Keasberry N, Bañobre-López M, Wood C, J. Stasiuk G, Gallo J, J. Long N. Tuning the relaxation rates of dual-mode T 1 / T 2 nanoparticle contrast agents: a study into the ideal system. Nanoscale 2015;7:16119–28. https://doi.org/10.1039/C5NR04400F.
[128] Wängler C, Schäfer M, Schirrmacher R, Bartenstein P, Wängler B. DOTA derivatives for site-specific biomolecule-modification via click chemistry: synthesis and comparison of reaction characteristics. Bioorg Med Chem 2011;19:3864–74. https://doi.org/10.1016/j.bmc.2010.12.047.
[129] Das S, Al-Toubah T, El-Haddad G, Strosberg J. 177Lu-DOTATATE for the treatment of gastroenteropancreatic neuroendocrine tumors. Expert Rev Gastroenterol Hepatol 2019;13:1023–31. https://doi.org/10.1080/17474124.2019.1685381.
[130] Characterization of 64Cu-DOTA-conatumumab: a PET tracer for in vivo imaging of death receptor 5 - PubMed n.d. https://pubmed.ncbi.nlm.nih.gov/21571804/ (accessed April 19, 2022).
[131] Jeong Y, Na K. Synthesis of a gadolinium based-macrocyclic MRI contrast agent for effective cancer diagnosis. Biomater Res 2018;22:17. https://doi.org/10.1186/s40824-018-0127-9.
[132] Noor-A-Alam M, Kim HJ, Shin Y-H. Dipolar polarization and piezoelectricity of a hexagonal boron nitride sheet decorated with hydrogen and fluorine. Phys Chem Chem Phys 2014;16:6575–82. https://doi.org/10.1039/C3CP53971G.
[133] Matter F, Luna Barron A, Niederberger M. From colloidal dispersions to aerogels: How to master nanoparticle gelation. Nano Today 2019;30. https://doi.org/10.1016/j.nantod.2019.100827.
[134] Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016;116:11220–89. https://doi.org/10.1021/acs.chemrev.6b00196.
[135] Zhang H, Wang D. Controlling the Growth of Charged-Nanoparticle Chains through Interparticle Electrostatic Repulsion. Angewandte Chemie 2008;120:4048–51. https://doi.org/10.1002/ange.200705537.
[136] Polleux J, Pinna N, Antonietti M, Niederberger M. Ligand-Directed Assembly of Preformed Titania Nanocrystals into Highly Anisotropic Nanostructures. Advanced Materials 2004;16:436–9. https://doi.org/10.1002/adma.200306251.
[137] Schupp DJ, Angst J, Schaefer EA, Schupp SM, Cölfen H. Controlling Oriented Attachment of Gold Nanoparticles by Size and Shape. J Phys Chem C 2021;125:20343–50. https://doi.org/10.1021/acs.jpcc.1c05937.
[138] Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP. Synthesis of hcp-Co Nanodisks. J Am Chem Soc 2002;124:12874–80. https://doi.org/10.1021/ja027262g.
[139] Liu HH, Surawanvijit S, Rallo R, Orkoulas G, Cohen Y. Analysis of Nanoparticle Agglomeration in Aqueous Suspensions via Constant-Number Monte Carlo Simulation. Environ Sci Technol 2011;45:9284–92. https://doi.org/10.1021/es202134p.
[140] Kim BY, Shim I-B, Araci ZO, Saavedra SS, Monti OLA, Armstrong NR, et al. Synthesis and Colloidal Polymerization of Ferromagnetic Au−Co Nanoparticles into Au−Co3O4 Nanowires. J Am Chem Soc 2010;132:3234–5. https://doi.org/10.1021/ja908481z.
[141] Yang M, Chen G, Zhao Y, Silber G, Wang Y, Xing S, et al. Mechanistic investigation into the spontaneous linear assembly of gold nanospheres. Phys Chem Chem Phys 2010;12:11850–60. https://doi.org/10.1039/C0CP00127A.
[142] Pacholski C, Kornowski A, Weller H. Self-Assembly of ZnO: From Nanodots to Nanorods. Angewandte Chemie International Edition 2002;41:1188–91. https://doi.org/10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5.
[143] Tang Z, Kotov NA, Giersig M. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science 2002;297:237–40. https://doi.org/10.1126/science.1072086.
[144] Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy: An overview. Asian Journal of Pharmaceutical Sciences 2016;11:337–48. https://doi.org/10.1016/j.ajps.2015.08.011.
[145] Maruyama K, Takizawa T, Takahashi N, Tagawa T, Nagaike K, Iwatsuru M. Targeting efficiency of PEG-immunoliposome-conjugated antibodies at PEG terminals. Advanced Drug Delivery Reviews 1997;24:235–42. https://doi.org/10.1016/S0169-409X(96)00463-2.
[146] Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, et al. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn Reson Med 2001;46:781–8. https://doi.org/10.1002/mrm.1257.
[147] Roosenburg S, Laverman P, Joosten L, Cooper MS, Kolenc-Peitl PK, Foster JM, et al. PET and SPECT Imaging of a Radiolabeled Minigastrin Analogue Conjugated with DOTA, NOTA, and NODAGA and Labeled with 64Cu, 68Ga, and 111In. Mol Pharmaceutics 2014;11:3930–7. https://doi.org/10.1021/mp500283k.
[148] Liu B, Qi W, Tian L, Li Z, Miao G, An W, et al. In Vivo Biodistribution and Toxicity of Highly Soluble PEG-Coated Boron Nitride in Mice. Nanoscale Res Lett 2015;10:478. https://doi.org/10.1186/s11671-015-1172-0.
[149] Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nano-drug delivery: Is the enhanced permeability and retention (EPR) effect sufficient for curing cancer? Bioconjug Chem 2016;27:2225–38. https://doi.org/10.1021/acs.bioconjchem.6b00437.
[150] Nandhakumar S, Dhanaraju MD, Sundar VD, Heera B. Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly(ε-caprolactone) nanoparticles. Bulletin of Faculty of Pharmacy, Cairo University 2017;55:249–58. https://doi.org/10.1016/j.bfopcu.2017.06.003.
[151] Shi Y, Fu Q, Li J, Liu H, Zhang Z, Liu T, et al. Covalent Organic Polymer as a Carborane Carrier for Imaging-Facilitated Boron Neutron Capture Therapy. ACS Appl Mater Interfaces 2020;12:55564–73. https://doi.org/10.1021/acsami.0c15251.
[152] Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Advanced Drug Delivery Reviews 2011;63:456–69. https://doi.org/10.1016/j.addr.2011.02.001.
[153] Van Eerdenbrugh B, Vermant J, Martens JA, Froyen L, Van Humbeeck J, Augustijns P, et al. A screening study of surface stabilization during the production of drug nanocrystals. Journal of Pharmaceutical Sciences 2009;98:2091–103. https://doi.org/10.1002/jps.21563.
[154] Zaboronok A, Khaptakhanova P, Uspenskii S, Bekarevich R, Mechetina L, Volkova O, et al. Polymer-Stabilized Elemental Boron Nanoparticles for Boron Neutron Capture Therapy: Initial Irradiation Experiments. Pharmaceutics 2022;14:761. https://doi.org/10.3390/pharmaceutics14040761.
[155] Hotze EM, Phenrat T, Lowry GV. Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. Journal of Environmental Quality 2010;39:1909–24. https://doi.org/10.2134/jeq2009.0462.
[156] Joseph E, Singhvi G. Chapter 4 - Multifunctional nanocrystals for cancer therapy: a potential nanocarrier. In: Grumezescu AM, editor. Nanomaterials for Drug Delivery and Therapy, William Andrew Publishing; 2019, p. 91–116. https://doi.org/10.1016/B978-0-12-816505-8.00007-2.
[157] Lu GW, Gao P. CHAPTER 3 - Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. In: Kulkarni VS, editor. Handbook of Non-Invasive Drug Delivery Systems, Boston: William Andrew Publishing; 2010, p. 59–94. https://doi.org/10.1016/B978-0-8155-2025-2.10003-4.
[158] Xiong Y, Liu X, Xiong H. Aggregation modeling of the influence of pH on the aggregation of variably charged nanoparticles. Sci Rep 2021;11:17386. https://doi.org/10.1038/s41598-021-96798-3.
[159] Shnoudeh AJ, Hamad I, Abdo RW, Qadumii L, Jaber AY, Surchi HS, et al. Chapter 15 - Synthesis, Characterization, and Applications of Metal Nanoparticles. In: Tekade RK, editor. Biomaterials and Bionanotechnology, Academic Press; 2019, p. 527–612. https://doi.org/10.1016/B978-0-12-814427-5.00015-9.
[160] Assadi M, Afrasiabi Z, Nabipour I, Seyedabadi M. Nanotechnology and nuclear medicine; research and preclinical applications. Hellenic Journal of Nuclear Medicine 2011;14:149–59.
[161] Ehlert S, Taheri SM, Pirner D, Drechsler M, Schmidt H-W, Förster S. Polymer Ligand Exchange to Control Stabilization and Compatibilization of Nanocrystals. ACS Nano 2014;8:6114–22. https://doi.org/10.1021/nn5014512.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *