帳號:guest(3.143.239.44)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張舜程
作者(外文):Chang, Shun-Cheng
論文名稱(中文):偕同光壓電效應鐵電觸媒在有機汙染物分解與產氫之研究
論文名稱(外文):Synergistically Piezophototronic Effect of Ferroelectric Catalysts on the Decomposition of Organic Pollutant and Hydrogen Evolution Reaction
指導教授(中文):吳志明
指導教授(外文):Wu, Jyh-Ming
口試委員(中文):葉均蔚
劉全璞
口試委員(外文):Yeh, Jien-Wei
Liu, Chuan-Pu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:109031601
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:150
中文關鍵詞:鈦酸鉍微米板高熵氧化物鐵電催化劑極化處理壓電光催化劑染料降解產氫
外文關鍵詞:Bi4Ti3O12 microplateshigh entropy oxidesferroelectric catalystpoling treatmentpiezo-photocatalystdye degradationhydrogen evolution
相關次數:
  • 推薦推薦:0
  • 點閱點閱:456
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究使用極化過後之鐵電材料開發了一套壓電光催化系統。一開始,因為鈦酸鉍 (Bi4Ti3O12) 具有獨特的光學和鐵電特性所以選擇其作為實驗材料。在僅有超音波振盪下,在2000伏特下極化之Bi4Ti3O12其產氫反應(HER)可在60分鐘內達到1349 µmol·g−1,與未極化之樣品比較高出了1.85倍。此外,通過同時施以超聲波震盪和光照,極化之 Bi4Ti3O12 的產氫產率可以提高到1465 µmol·g−1。除了公認的鐵電材料外,由於最近高熵材料的概念被引入用來研究電子陶瓷的新特性,也為鐵電催化劑的研究提供了一個充滿希望的方向。本研究採用溶膠凝膠自燃法合成了 CaZrYCeCrO2 高熵氧化物 (HEO),其中包含了具有鐵電性質之 Cr 摻雜 CaZrO3 析出在多孔螢石結構上。通過協同壓電光催化過程,38 at% 鈣含量的 HEO (38HEO) 可以在一小時內完全分解 MB 染料,相對應的速率常數達到0.074 min-1,分別是壓電催化和光催化過程的3倍和1.85倍。除此之外,經過1500 V的極化處理後,極化的 38HEO 與其他 HEO 相比在60分鐘內的產氫性能最高,為1081 µmol·g−1,分別比44 at% 鈣含量的 HEO 和未極化的 38HEO 高上2.2倍和1.3倍。這些結果表明具有內建電場的鐵電材料的催化性能可以有效地降低電子電洞對的複合率。由於施以極化過程會使鐵電域中之極化沿同一方向重新分佈,因此可以提高壓電催化性能。該研究顯示了極化處理對鐵電催化劑的重要性,並為開發用於壓電光催化的高熵氧化物提供了新的見解。
The piezo-photocatalytic system was developed in this work using ferroelectric material after the poling process. Initially, the bismuth titanate (Bi4Ti3O12) was chosen due to its unique optical and ferroelectric properties. Under only ultrasonic vibration, the hydrogen evolution reaction (HER) of Bi4Ti3O12 poled under 2000 V can achieve 1349 µmol·g−1 in 60 minutes, which is 1.85 times higher than that of the unpoled one. In addition, the hydrogen generation yields of poled Bi4Ti3O12 can be enhanced to 1465 µmol·g−1 by simultaneously applying ultrasonication and light irradiation. Apart from the well-recognized ferroelectric material, the concept of high entropy materials was introduced recently to investigate novel electronic ceramics properties, which also provides a promising direction to research ferroelectric catalysts. In this study, CaZrYCeCrO2 high entropy oxides (HEOs), in which ferroelectric Cr-doped CaZrO3 were precipitated on the porous fluorite structure, were synthesized via sol-gel autocombustion method. Through the synergistic piezo-phototronic process, the HEO with 38 at% calcium (38HEO) can optimally decompose the MB dye completely in one hour and the corresponding rate constant reaches 0.074 min-1, which is 3 times and 1.85 times higher than that undergoing piezocatalytic and photocatalytic processes, respectively. Besides, after poling process applied with 1500 V, poled 38HEO exhibits the highest hydrogen evolution performance of 1081 µmol·g−1 within 60 minutes compared to other HEOs, which is 2.2 times and 1.3 times higher than HEO with 44 at% Ca and unpoled 38HEO. These results show the catalytic performance of ferroelectric material with built-in electric field to effectively reduce the recombination rate of electron-hole pairs. By applying the poling process, the piezocatalytic performance can be improved due to polarizations in ferroelectric domains redistributing along the same direction. This study reveals the importance of poling treatment on ferroelectric catalysts and provides new insights into developing high entropy oxides for piezo-photocatalysis.
中文摘要
Abstract
誌謝
CHAPTER 1 Introduction------------------------------1
1.1 Background------------------------------1
1.2 Motivation------------------------------2
CHAPTER 2 Literature review------------------------------5
2.1 Photocatalyst------------------------------5
2.1.1 Doping engineering for modification of photocatalyst-----------7
2.1.2. Heterojunction------------------------------14
2.2 Piezoelectric effect and piezocatalysis------------------------20
2.2.1 Mechanism of piezocatalysis: piezopotential-driven water splitting------------------------------23
2.2.2 Piezoelectric 2D transition metal dichalcogenides-------------25
2.2.3 Ferroelectric catalyst------------------------------31
2.3 Piezo-photocatalytic heterojunction----------------------------45
2.3.1 BiFeO3/TiO2 core-shell nanocomposite-------------------------46
2.3.2 BaTiO3/CuO heterojunction---------------------51
2.4 High entropy oxide (HEOs)---------------------57
2.4.1 High entropy effect---------------------57
2.4.2 Severe lattice distortion effect---------------------59
2.4.3 Sluggish diffusion effect---------------------59
2.4.4 Cocktail effect---------------------60
2.4.5 Sol-gel autocombustion method---------------------70
CHAPTER 3 Experimental methods---------------------73
3.1 Experimental procedures---------------------73
3.2 Synthesis---------------------73
3.2.1 Bi4Ti3O12 microplates---------------------73
3.2.2 CaZrYCeCrO2 HEO composites---------------------75
3.3 Instrument for characterization identification------------------78
3.3.1 Cold field scanning electron microscope (SEM)-----------------78
3.3.2 X-ray diffractometer (XRD)---------------------79
3.3.3 High resolution transmission electron microscopy (HRTEM)------80
3.3.4 X-ray photoelectron spectroscopy (XPS)---------------------81
3.3.5 Piezoresponse force microscopy (PFM)---------------------82
3.3.6 Diffuse reflectance spectroscopy (DRS)---------------------83
3.3.7 Ferroelectric hysteresis analyzer---------------------84
3.3.8 Time-resolved photoluminescence spectroscopy------------------85
3.3.9 Fluorescence photoluminescence spectrophotometer--------------86
3.3.10 Electron paramagnetic resonance spectrometer (EPR)-----------87
3.4 Catalytic experiment---------------------89
3.4.1 Dye degradation trial---------------------89
3.4.2 Hydrogen evolution reaction---------------------90
3.5 Computational method---------------------91
3.5.1 DFT calculation---------------------91
3.5.2 COMSOL Multiphysics---------------------92
CHAPTER 4 Result and Discussion---------------------94
4.1 Characterization analysis---------------------94
4.1.1 Bi4Ti3O12 microplates---------------------94
4.1.2 CaZrYCeCrO2 high entropy oxide---------------------97
4.2 Ferroelectricity analysis---------------------104
4.2.1 PFM analysis of Bi4Ti3O12---------------------104
4.2.2 CaZrYCeCrO2 high entropy oxide---------------------106
4.2.2-1 Oxygen vacancy analysis---------------------106
4.2.2-2 Dynamic hysteresis measurement (DHM)---------------------107
4.2.2-3 PFM analysis---------------------109
4.3 DRS analysis---------------------111
4.4 TRPL analysis---------------------112
4.5 Environmental remediation---------------------113
4.5.1 Dye degradation test---------------------113
4.5.2 Hydrogen evolution reaction---------------------118
4.5.2-1 Bi4Ti3O12 microplates---------------------118
4.5.2-2 CaZrYCeCrO2 HEOs---------------------121
4.5.3 FL & EPR analysis---------------------124
4.5.3-1 Bi4Ti3O12 microplates---------------------124
4.5.3-2 CaZrYCeCrO2 HEOs---------------------126
4.6 Computational simulation---------------------128
4.6.1 Bi4Ti3O12 microplates---------------------128
4.6.2 CaZrYCeCrO2 high entropy oxide---------------------129
4.7 Working mechanism---------------------134
CHAPTER 5 Conclusion and future prospects---------------------140
5.1 Conclusion---------------------140
5.2 Prospects---------------------142
Reference---------------------143
1. Veziroglu, T.N., 21st Century's energy: Hydrogen energy system. Альтернативная энергетика и экология, 2007(4): p. 29-39.
2. Ni, M., et al., An overview of hydrogen production from biomass. Fuel Processing Technology, 2006. 87(5): p. 461-472.
3. Oertel, M., et al., Steam reforming of natural gas with intergrated hydrogen separation for hydrogen production. Chemical Engineering & Technology, 1987. 10(1): p. 248-255.
4. Wang, M., et al., The intensification technologies to water electrolysis for hydrogen production – A review. Renewable and Sustainable Energy Reviews, 2014. 29: p. 573-588.
5. Rajaambal, S., K. Sivaranjani, and C.S. Gopinath, Recent developments in solar H2 generation from water splitting. Journal of Chemical Sciences, 2015. 127(1): p. 33-47.
6. Honnery, D. and P. Moriarty, Estimating global hydrogen production from wind. International Journal of Hydrogen Energy, 2009. 34(2): p. 727-736.
7. Comninellis, C., et al., Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology & Biotechnology, 2008. 83(6): p. 769-776.
8. Poyatos, J.M., et al., Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water, Air, and Soil Pollution, 2009. 205(1): p. 187.
9. Maeda, K. and K. Domen, Photocatalytic Water Splitting: Recent Progress and Future Challenges. The Journal of Physical Chemistry Letters, 2010. 1(18): p. 2655-2661.
10. Hong, K.-S., et al., Piezoelectrochemical Effect: A New Mechanism for Azo Dye Decolorization in Aqueous Solution through Vibrating Piezoelectric Microfibers. The Journal of Physical Chemistry C, 2012. 116(24): p. 13045-13051.
11. Starr, M.B. and X. Wang, Fundamental Analysis of Piezocatalysis Process on the Surfaces of Strained Piezoelectric Materials. Scientific Reports, 2013. 3(1): p. 2160.
12. Wu, J.M., et al., Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single- and Few-Layers MoS2 Nanoflowers. Advanced Materials, 2016. 28(19): p. 3718-3725.
13. Wang, Y.-C. and J.M. Wu, Effect of Controlled Oxygen Vacancy on H2-Production through the Piezocatalysis and Piezophototronics of Ferroelectric R3C ZnSnO3 Nanowires. Advanced Functional Materials, 2020. 30(5): p. 1907619.
14. Zheng, T., et al., Recent development in lead-free perovskite piezoelectric bulk materials. Progress in Materials Science, 2018. 98: p. 552-624.
15. Jardiel, T., A.C. Caballero, and M. Villegas, Aurivillius ceramics: Bi4Ti3O12-based piezoelectrics. Journal of the Ceramic Society of Japan, 2008. 116(1352): p. 511-518.
16. Cummins, S.E. and L.E. Cross, Electrical and Optical Properties of Ferroelectric Bi4Ti3O12 Single Crystals. Journal of Applied Physics, 1968. 39(5): p. 2268-2274.
17. Edalati, P., et al., Photocatalytic hydrogen evolution on a high-entropy oxide. Journal of Materials Chemistry A, 2020. 8(7): p. 3814-3821.
18. Lun, M., et al., Ferroelectric K0.5Na0.5NbO3 catalysts for dye wastewater degradation. Ceramics International, 2021. 47(20): p. 28797-28805.
19. Liu, Z., et al., Microstructure and ferroelectric properties of high-entropy perovskite oxides with A-site disorder. Ceramics International, 2021. 47(23): p. 33039-33046.
20. Zhang, A., et al., Vibration catalysis of eco-friendly Na0.5K0.5NbO3-based piezoelectric: An efficient phase boundary catalyst. Applied Catalysis B: Environmental, 2020. 279: p. 119353.
21. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.
22. Chan, S.H.S., et al., Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. Journal of Chemical Technology & Biotechnology, 2011. 86(9): p. 1130-1158.
23. Anandan, S., N. Ohashi, and M. Miyauchi, ZnO-based visible-light photocatalyst: Band-gap engineering and multi-electron reduction by co-catalyst. Applied Catalysis B: Environmental, 2010. 100(3): p. 502-509.
24. Samsudin, E.M. and S.B. Abd Hamid, Effect of band gap engineering in anionic-doped TiO2 photocatalyst. Applied Surface Science, 2017. 391: p. 326-336.
25. Bai, S., et al., Defect engineering in photocatalytic materials. Nano Energy, 2018. 53: p. 296-336.
26. Low, J., et al., Heterojunction Photocatalysts. Advanced Materials, 2017. 29(20): p. 1601694.
27. Li, X., et al., Graphene-based heterojunction photocatalysts. Applied Surface Science, 2018. 430: p. 53-107.
28. Yu, C., et al., Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation. Chinese Journal of Catalysis, 2014. 35(10): p. 1609-1618.
29. Zhang, Q., et al., Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Applied Catalysis A: General, 2011. 400(1): p. 195-202.
30. Hazaraimi, M.H., et al., The state-of-the-art development of photocatalysts for the degradation of persistent herbicides in wastewater. Science of The Total Environment, 2022. 843: p. 156975.
31. Kaur, N., et al., Comprehensive review and future perspectives of efficient N-doped, Fe-doped and (N,Fe)-co-doped titania as visible light active photocatalysts. Vacuum, 2020. 178: p. 109429.
32. Xu, G., et al., Nitrogen-doped mixed-phase TiO2 with controllable phase junction as superior visible-light photocatalyst for selective oxidation of cyclohexane. Applied Surface Science, 2021. 536: p. 147953.
33. Patil, S.B., et al., Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. International Journal of Hydrogen Energy, 2019. 44(26): p. 13022-13039.
34. Liu, R., et al., Visible-light responsive boron and nitrogen codoped anatase TiO2 with exposed {0 0 1} facet: Calculation and experiment. Applied Surface Science, 2019. 466: p. 568-577.
35. Karuppasamy, P., et al., An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation. Journal of Environmental Chemical Engineering, 2021. 9(4): p. 105254.
36. Zhang, L., et al., Emerging S-Scheme Photocatalyst. Advanced Materials, 2022. 34(11): p. 2107668.
37. Bard, A.J., Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. Journal of Photochemistry, 1979. 10(1): p. 59-75.
38. Tada, H., et al., All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nature Materials, 2006. 5(10): p. 782-786.
39. Tahir, M., S. Tasleem, and B. Tahir, Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020. 45(32): p. 15985-16038.
40. Xu, Q., et al., S-Scheme Heterojunction Photocatalyst. Chem, 2020. 6(7): p. 1543-1559.
41. Fu, J., et al., Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Applied Catalysis B: Environmental, 2019. 243: p. 556-565.
42. Koptsik, V.A. and I.S. Rez, Pierre Curie's works in the field of crystal physics (on the one-hundredth anniversary of the discovery of the piezoelectric effect). Soviet Physics Uspekhi, 1981. 24(5): p. 426-428.
43. Atif, R., et al., Solution Blow Spinning of Polyvinylidene Fluoride Based Fibers for Energy Harvesting Applications: A Review. Polymers, 2020. 12: p. 1304.
44. Wang, Z.L., Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today, 2010. 5(6): p. 540-552.
45. Varghese, J., R.W. Whatmore, and J.D. Holmes, Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications. Journal of Materials Chemistry C, 2013. 1(15): p. 2618-2638.
46. Zhang, X., et al., Self-powered ethanol gas sensor based on the piezoelectric Ag/ZnO nanowire arrays at room temperature. Journal of Materials Science: Materials in Electronics, 2021. 32(6): p. 7739-7750.
47. Babacan, S., et al., Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosensors and Bioelectronics, 2000. 15(11): p. 615-621.
48. Wu, Y., et al., Piezoelectric materials for flexible and wearable electronics: A review. Materials & Design, 2021. 211: p. 110164.
49. Boxberg, F., N. Søndergaard, and H.Q. Xu, Photovoltaics with Piezoelectric Core−Shell Nanowires. Nano Letters, 2010. 10(4): p. 1108-1112.
50. Chen, D. and C. Pomalaza-Ráez, A self-cleaning piezoelectric PVDF membrane system for filtration of kaolin suspension. Separation and Purification Technology, 2019. 215: p. 612-618.
51. Kumar, B. and S.-W. Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy, 2012. 1(3): p. 342-355.
52. Wu, W., et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014. 514(7523): p. 470-474.
53. Coogan, Á. and Y.K. Gun'ko, Solution-based “bottom-up” synthesis of group VI transition metal dichalcogenides and their applications. Materials Advances, 2021. 2(1): p. 146-164.
54. Wu, J., N. Qin, and D. Bao, Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy, 2018. 45: p. 44-51.
55. Cheng, T., et al., Piezocatalytic degradation of methylene blue, tetrabromobisphenol A and tetracycline hydrochloride using Bi4Ti3O12 with different morphologies. Materials Research Bulletin, 2021. 141: p. 111350.
56. Liu, Y.-L. and J.M. Wu, Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect. Nano Energy, 2019. 56: p. 74-81.
57. Yu, C., et al., Remarkably enhanced piezo-photocatalytic performance in BaTiO3/CuO heterostructures for organic pollutant degradation. Journal of Advanced Ceramics, 2022. 11(3): p. 414-426.
58. Yeh, J.-W., et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
59. Jien-Wei, Y., Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 2006. 31(6): p. 633-648.
60. Rost, C.M., et al., Entropy-stabilized oxides. Nature Communications, 2015. 6(1): p. 8485.
61. Sarkar, A., et al., High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties. Advanced Materials, 2019. 31(26): p. 1806236.
62. McCormack, S.J. and A. Navrotsky, Thermodynamics of high entropy oxides. Acta Materialia, 2021. 202: p. 1-21.
63. Akrami, S., et al., High-entropy ceramics: Review of principles, production and applications. Materials Science and Engineering: R: Reports, 2021. 146: p. 100644.
64. Bhaskar, L.K., V. Nallathambi, and R. Kumar, Critical role of cationic local stresses on the stabilization of entropy-stabilized transition metal oxides. Journal of the American Ceramic Society, 2020. 103(5): p. 3416-3424.
65. Qiu, N., et al., A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. Journal of Alloys and Compounds, 2019. 777: p. 767-774.
66. Senkov, O.N., et al., Refractory high-entropy alloys. Intermetallics, 2010. 18(9): p. 1758-1765.
67. Ma, Y., et al., High-entropy energy materials: Challenges and new opportunities. Energy & Environmental Science, 2021. 14(5): p. 2883-2905.
68. Chen, K., et al., A five-component entropy-stabilized fluorite oxide. Journal of the European Ceramic Society, 2018. 38(11): p. 4161-4164.
69. Zhu, J., et al., Ultra-low thermal conductivity and enhanced mechanical properties of high-entropy rare earth niobates (RE3NbO7, RE = Dy, Y, Ho, Er, Yb). Journal of the European Ceramic Society, 2021. 41(1): p. 1052-1057.
70. Okejiri, F., et al., Room-Temperature Synthesis of High-Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonication-Based Method. ChemSusChem, 2020. 13(1): p. 111-115.
71. Zheng, Y., et al., A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Materials, 2019. 23: p. 678-683.
72. Witte, R., et al., Magnetic properties of rare-earth and transition metal based perovskite type high entropy oxides. Journal of Applied Physics, 2020. 127(18): p. 185109.
73. Zhang, J., et al., Long-Range Antiferromagnetic Order in a Rocksalt High Entropy Oxide. Chemistry of Materials, 2019. 31(10): p. 3705-3711.
74. Zhou, S., et al., Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceramics International, 2020. 46(6): p. 7430-7437.
75. Radoń, A., et al., Dielectric and electromagnetic interference shielding properties of high entropy (Zn,Fe,Ni,Mg,Cd)Fe2O4 ferrite. Scientific Reports, 2019. 9(1): p. 20078.
76. Zachariasz, R. and D. Bochenek, Modified PZT ceramics as a material that can be used in micromechatronics. The European Physical Journal B, 2015. 88(11): p. 296.
77. Bochenek, D., et al., Electrophysical properties of a multicomponent PZT-type ceramics for actuator applications. Journal of Physics and Chemistry of Solids, 2019. 133: p. 128-134.
78. Sarkar, A., et al., High entropy oxides for reversible energy storage. Nature Communications, 2018. 9(1): p. 3400.
79. Chen, H., et al., A new spinel high-entropy oxide (Mg 0.2 Ti 0.2 Zn 0.2 Cu 0.2 Fe 0.2) 3 O 4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries. RSC advances, 2020. 10(16): p. 9736-9744.
80. Gazda, M., et al., Novel Class of Proton Conducting Materials—High Entropy Oxides. ACS Materials Letters, 2020. 2(10): p. 1315-1321.
81. Jiang, S., et al., A new class of high-entropy perovskite oxides. Scripta Materialia, 2018. 142: p. 116-120.
82. Li, F., et al., Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics. Advanced Functional Materials, 2018. 28(37): p. 1801504.
83. Li, T., et al., Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Materialia, 2017. 128: p. 337-344.
84. Li, X., et al., Design and investigate the electrical properties of Pb(Mg0.2Zn0.2Nb0.2Ta0.2W0.2)O3–PbTiO3 high-entropy ferroelectric ceramics. Ceramics International, 2022. 48(9): p. 12848-12855.
85. Mao, A., et al., Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder. Journal of Magnetism and Magnetic Materials, 2019. 484: p. 245-252.
86. Jiang, Y., et al., Sol–gel autocombustion synthesis of metals and metal alloys. Angewandte Chemie, 2009. 121(45): p. 8681-8683.
87. Niu, B., et al., Sol-gel Autocombustion Synthesis of Nanocrystalline High-entropy Alloys. Scientific Reports, 2017. 7(1): p. 3421.
88. Wang, V., et al., VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Computer Physics Communications, 2021. 267: p. 108033.
89. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996. 54(16): p. 11169-11186.
90. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.
91. Blöchl, P.E., Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953-17979.
92. Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zone integrations. Physical Review B, 1976. 13(12): p. 5188-5192.
93. Gupta, S.K., et al., Nature of defects in blue light emitting CaZrO 3: spectroscopic and theoretical study. Rsc Advances, 2015. 5(70): p. 56526-56533.
94. Pan, M., et al., Multifunctional Piezoelectric Heterostructure of BaTiO3@Graphene: Decomplexation of Cu-EDTA and Recovery of Cu. Environmental Science & Technology, 2019. 53(14): p. 8342-8351.
95. Jiang, W., et al., Surfactant-Free Synthesis of Single-Crystalline Bi4Ti3O12 Nanosheets with Excellent Visible-Light Photocatalytic Activity. Catalysis Surveys from Asia, 2019. 23(4): p. 322-331.
96. Zhao, X., et al., Growth Process and CQDs-modified Bi4Ti3O12 Square Plates with Enhanced Photocatalytic Performance. Micromachines, 2019. 10(1): p. 66.
97. Han, P., et al., Perovskite CaZrO3 for efficient ozonation treatment of organic pollutants in wastewater. Catalysis Science & Technology, 2021. 11(11): p. 3697-3705.
98. Koirala, R., et al., Effect of Zirconia Doping on the Structure and Stability of CaO-Based Sorbents for CO2 Capture during Extended Operating Cycles. The Journal of Physical Chemistry C, 2011. 115(50): p. 24804-24812.
99. Zhidkov, I.S., et al., Effect of post-annealing in air on optical and XPS spectra of Y2O3 ceramics doped with CeO2. Mendeleev Communications, 2019. 29(1): p. 102-104.
100. Chen, Y., et al., Reduction and Removal of Chromium VI in Water by Powdered Activated Carbon. Materials, 2018. 11(2): p. 269.
101. Jain, S., et al., Significance of interface barrier at electrode of hematite hydroelectric cell for generating ecopower by water splitting. International Journal of Energy Research, 2019. 43(9): p. 4743-4755.
102. Huang, B., et al., Boosting the photocatalytic activity of mesoporous SrTiO 3 for nitrogen fixation through multiple defects and strain engineering. Journal of Materials Chemistry A, 2020. 8(42): p. 22251-22256.
103. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, 1976. 32(5): p. 751-767.
104. Gruverman, A., et al., Nanoscale observation of photoinduced domain pinning and investigation of imprint behavior in ferroelectric thin films. Journal of Applied Physics, 2002. 92(5): p. 2734-2739.
105. Singh, D.J., S.S.A. Seo, and H.N. Lee, Optical properties of ferroelectric ${\text{Bi}}_{4}{\text{Ti}}_{3}{\text{O}}_{12}$. Physical Review B, 2010. 82(18): p. 180103.
106. Wang, Y., et al., Interfacial defect mediated charge carrier trapping and recombination dynamics in TiO2-based nanoheterojunctions. Journal of Alloys and Compounds, 2021. 872: p. 159592.
107. Lin, Y.-T., S.-N. Lai, and J.M. Wu, Simultaneous Piezoelectrocatalytic Hydrogen-Evolution and Degradation of Water Pollutants by Quartz Microrods@Few-Layered MoS2 Hierarchical Heterostructures. Advanced Materials, 2020. 32(34): p. 2002875.
108. Zhang, L., et al., Enhanced photocatalytic activity in ferroelectric BiFeO3 nanoparticles treated by a corona poling method. Ceramics International, 2022. 48(11): p. 15908-15912.
109. Chauvin, J., et al., Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Scientific Reports, 2017. 7(1): p. 4562.
110. Dorrian, J.F., et al., Crystal structure of Bi4Ti3O12. Ferroelectrics, 1972. 3(1): p. 17-27.
111. Nunes-Pereira, J., et al., Modelling of elastic modulus of CaZrO3-MgO composites using isotropic elastic and anisotropic models. Journal of the European Ceramic Society, 2020. 40(15): p. 5882-5890.
112. Zhang, Y., et al., A comparison study of the structural and mechanical properties of cubic, tetragonal, monoclinic, and three orthorhombic phases of ZrO2. Journal of Alloys and Compounds, 2018. 749: p. 283-292
(此全文20280108後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *