帳號:guest(3.144.248.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周宥瑋
作者(外文):Chou, Yu-Wei
論文名稱(中文):有機磷酸鹽類做為在矽基板上的高熱穩定性單層自組裝分子之研究
論文名稱(外文):Organophosphonate self-assembled monolayer (SAM) as a thermally stable SAM on silicon
指導教授(中文):龔佩雲
指導教授(外文):Keng, Pei-Yuin
口試委員(中文):呂明諺
洪偉修
口試委員(外文):Lu, Ming-Yen
Hung, Wei-Hsiu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:109031600
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:103
中文關鍵詞:單層自組裝薄膜有機矽烷有機磷酸熱穩定性
外文關鍵詞:SAMorganosilaneorganophosphonic acidthermal stability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:71
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,由於半導體產業的急遽發展及元件尺寸的微縮下,傳統使用的微影製程技術已達到臨界點,而需採用高昂的深紫外光來進行圖形轉移,這使得傳統的微影製程已不再具備低成本且快速的優點。為了解決尺寸微縮下所造成的技術障礙,選擇性沉積逐漸地受到重視,因為其可達到奈米尺寸的選擇性,且具備著較低成本的優勢,例如單層自組裝分子已經被相當多的文獻證實可以在化學氣相沉積中達到選擇性沉積,透過單層自組裝分子鈍化特定的區域,可以延長化學氣相沉積前驅物的成核時間,藉此來達成選擇性的效果,最常見的方法就是使有機矽烷類分子功能化在矽基板上面,藉此鈍化矽基板,達成金屬對金屬間的沉積。然而,相當多的文獻指出有機烷類在高溫的狀態下容易降解,並且會在基板表面進行聚集,產生高達30奈米的團簇,種種的跡象顯示有機矽烷類分子在需要一定溫度的化學氣相沉積下會在表面進產生許多不利的影響。在此篇研究中,我們研究了新穎的磷酸鹽類作為在矽基板上取代有機烷類的可能性,在與化學氣相沉積相同的壓力環境下,我們分析其表面形貌以及斷鍵的行為,藉此來研究兩種材料的熱穩定性。為了解決在雙鑲嵌結構中,有機磷酸會與底部的基板產生反應,我們使用正交功能化方法來克服,其使用硫醇鹽類來當作阻擋層,並且在不損害矽上磷酸單層膜的情況下來去除此阻擋層。最終研究成果表明,我們成功的證明有機磷酸鹽類是相對熱穩定性的材料,並且也成功地用正交功能化方法來使有機磷酸選擇性沉積在矽基板上。
The thermal stability of butylphosphonic acid (BPA) and 3-aminopropyltriethoxysilane (APTES) SAM on silicon substrate was investigated under a reduced pressure condition. The thermal desorption and surface morphology of the BPA and APTES SAM on silicon is determined from high-resolution X-ray photoelectron spectroscopy (HRXPS) and atomic force microscopy (AFM) upon thermal annealing from 50 °C to 550 °C. XPS and AFM results revealed that the anchoring group of APTES SAM on silicon first detached under a thermal treatment at 150 °C for 60min. The detached APTES further aggregate to a thermally stable cluster at 150 °C to 400 °C. Upon the 400 °C annealing, the APTES SAM completely decompose and desorbed from the substrate. On the other hand, the BPA SAM first cleavage at the C2—C3 bond, leaving the ethylphosphonate SAM on silicon. However, the surface morphology of BPA SAM on silicon remained smooth upon thermal annealing. The BPA SAM on silicon can remain stable up to 350 °C annealing. Upon 400 °C annealing, the P—O—Si bonding decomposed, and the molecular detached from the silicon surface. Compared to the organosilane SAM on silicon, organophosphonate SAM on silicon can remain stable and smooth surface on the silicon substrate up to 350 °C. Herein, we demonstrate the advantage of utilizing organophosphonate as an alternative SAM to be applied in the process requiring thermal annealing. We also demonstrate an orthogonal functionalization approach to overcome the spontaneous reaction between organophosphonate and metal. With the orthogonal functionalization approach, the functionalization of organophosphonate SAM on silicon can be further applied in the structure with both metal and silicon surfaces.
摘要 1
Abstract 2
Acknowledgment 4
Table of Contents 5
Figure and table 7
Chapter 1 Introduction 13
1.1 Executive summary 13
Chapter 2 Literature Review 16
2.1 Introduction of self-assembled monolayers (SAM) 16
2.2 Introduction of area selective deposition (ASD) in microelectronics 25
2.3 Application of SAM towards ASD in microelectronics 29
2.4 Thermal stability of SAM on Si 37
2.5 Orthogonal functionalization of SAM on Si and Cu. 39
Chapter 3 Preparation and Design of Experiment 43
3.1 Substrate pretreatment and SAMs functionalize on silicon 46
3.2 Thermal stability analysis 49
3.3 Orthogonal selective functionalization 51
3.4 Instrument 52
Chapter 4 Result and Discussion 54
4.1 Characterization of aminopropyltriethoxysilane (APTES)-functionalized Si 54
4.2 Characterization of butylphosphonic acid (BPA)-functionalized Si 61
4.3 Thermal stability of APTES and BPA SAMs functionalized on Si 67
4.4 Selective functionalization of BPA on silicon and copper substrate 78
Chapter 5 Conclusion 85
Chapter 6 Prospective 87
Method 1 Thermal stability enhancement with the terminal hydrogen bond induced by –NH2 87
Method 2 Thermal stability enhancement with the crosslinking system 90
Reference 95
[1] G.N. Parsons, R.D. Clark, Area-Selective Deposition: Fundamentals, Applications, and Future Outlook, Chem. Mater. 32 (2020) 4920–4953. https://doi.org/10.1021/acs.chemmater.0c00722.
[2] D. Bobb-Semple, K.L. Nardi, N. Draeger, D.M. Hausmann, S.F. Bent, Area-Selective Atomic Layer Deposition Assisted by Self-Assembled Monolayers: A Comparison of Cu, Co, W, and Ru, Chem. Mater. 31 (2019) 1635–1645. https://doi.org/10.1021/acs.chemmater.8b04926.
[3] E. Färm, M. Vehkamäki, M. Ritala, M. Leskelä, Passivation of copper surfaces for selective-area ALD using a thiol self-assembled monolayer, Semicond. Sci. Technol. 27 (2012) 074004. https://doi.org/10.1088/0268-1242/27/7/074004.
[4] F.S.M. Hashemi, C. Prasittichai, S.F. Bent, A New Resist for Area Selective Atomic and Molecular Layer Deposition on Metal–Dielectric Patterns, J. Phys. Chem. C. 118 (2014) 10957–10962. https://doi.org/10.1021/jp502669f.
[5] J. Käshammer, P. Wohlfart, J. Weiß, C. Winter, R. Fischer, S. Mittler-Neher, Selective gold deposition via CVD onto self-assembled organic monolayers, Optical Materials. 9 (1998) 406–410. https://doi.org/10.1016/S0925-3467(97)00105-5.
[6] A. Chandekar, S.K. Sengupta, J.E. Whitten, Thermal stability of thiol and silane monolayers: A comparative study, Applied Surface Science. 256 (2010) 2742–2749. https://doi.org/10.1016/j.apsusc.2009.11.020.
[7] X. Wan, I. Lieberman, A. Asyuda, S. Resch, H. Seim, P. Kirsch, M. Zharnikov, Thermal Stability of Phosphonic Acid Self-Assembled Monolayers on Alumina Substrates, J. Phys. Chem. C. 124 (2020) 2531–2542. https://doi.org/10.1021/acs.jpcc.9b10628.
[8] H.L. Chen, H.F. Lee, W.C. Chao, C.I. Hsieh, F.H. Ko, T.C. Chu, Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 22 (2004) 3359–3362. https://doi.org/10.1116/1.1824059.
[9] C.M. Whelan, M. Kinsella, H.M. Ho, K. Maex, Corrosion Inhibition by Thiol-Derived SAMs for Enhanced Wire Bonding on Cu Surfaces, J. Electrochem. Soc. 151 (2004) B33. https://doi.org/10.1149/1.1635387.
[10] S. Casalini, C.A. Bortolotti, F. Leonardi, F. Biscarini, Self-assembled monolayers in organic electronics, Chem. Soc. Rev. 46 (2017) 40–71. https://doi.org/10.1039/C6CS00509H.
[11] Y. Xia, M. Mrksich, E. Kim, G.M. Whitesides, Microcontact Printing of Octadecylsiloxane on the Surface of Silicon Dioxide and Its Application in Microfabrication, J. Am. Chem. Soc. 117 (1995) 9576–9577. https://doi.org/10.1021/ja00142a031.
[12] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev. 105 (2005) 1103–1170. https://doi.org/10.1021/cr0300789.
[13] R. Wang, K. Jakhar, S. Ahmed, D.S. Antao, Elucidating the Mechanism of Condensation-Mediated Degradation of Organofunctional Silane Self-Assembled Monolayer Coatings, ACS Appl. Mater. Interfaces. 13 (2021) 34923–34934. https://doi.org/10.1021/acsami.1c08496.
[14] I. Zyulkov, V. Madhiwala, E. Voronina, M. Snelgrove, J. Bogan, R. O’Connor, S. De Gendt, S. Armini, Area-Selective ALD of Ru on Nanometer-Scale Cu Lines through Dimerization of Amino-Functionalized Alkoxy Silane Passivation Films, ACS Appl. Mater. Interfaces. 12 (2020) 4678–4688. https://doi.org/10.1021/acsami.9b14596.
[15] T. Abu-Husein, S. Schuster, D.A. Egger, M. Kind, T. Santowski, A. Wiesner, R. Chiechi, E. Zojer, A. Terfort, M. Zharnikov, The Effects of Embedded Dipoles in Aromatic Self-Assembled Monolayers, Advanced Functional Materials. 25 (2015) 3943–3957. https://doi.org/10.1002/adfm.201500899.
[16] Y. Xu, C.B. Musgrave, A DFT Study of the Al 2 O 3 Atomic Layer Deposition on SAMs: Effect of SAM Termination, Chem. Mater. 16 (2004) 646–653. https://doi.org/10.1021/cm035009p.
[17] D. Aldakov, Y. Bonnassieux, B. Geffroy, S. Palacin, Selective Electroless Copper Deposition on Self-Assembled Dithiol Monolayers, ACS Appl. Mater. Interfaces. 1 (2009) 584–589. https://doi.org/10.1021/am8001346.
[18] M. Singh, N. Kaur, E. Comini, The role of self-assembled monolayers in electronic devices, J. Mater. Chem. C. 8 (2020) 3938–3955. https://doi.org/10.1039/D0TC00388C.
[19] M.-C. Bourg, A. Badia, R.B. Lennox, Gold−Sulfur Bonding in 2D and 3D Self-Assembled Monolayers:  XPS Characterization, J. Phys. Chem. B. 104 (2000) 6562–6567. https://doi.org/10.1021/jp9935337.
[20] C. Vericat, M. E. Vela, G. Benitez, P. Carro, R. C. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold : new challenges for a well-known system, Chemical Society Reviews. 39 (2010) 1805–1834. https://doi.org/10.1039/B907301A.
[21] S.C.T. Kwok, F. Ciucci, M.M.F. Yuen, Chemisorption Threshold of Thiol-based Monolayer on Copper: Effect of Electric Potential and Elevated Temperature, Electrochimica Acta. 198 (2016) 185–194. https://doi.org/10.1016/j.electacta.2016.03.068.
[22] S.D. Conzone, C.G. Pantano, Glass slides to DNA microarrays, Materials Today. 7 (2004) 20–26. https://doi.org/10.1016/S1369-7021(04)00122-1.
[23] X. Zeng, G. Xu, Y. Gao, Y. An, Surface Wettability of (3-Aminopropyl)triethoxysilane Self-Assembled Monolayers, J. Phys. Chem. B. 115 (2011) 450–454. https://doi.org/10.1021/jp109259b.
[24] R.M. Pasternack, S. Rivillon Amy, Y.J. Chabal, Attachment of 3-(Aminopropyl)triethoxysilane on Silicon Oxide Surfaces: Dependence on Solution Temperature, Langmuir. 24 (2008) 12963–12971. https://doi.org/10.1021/la8024827.
[25] J.A. Howarter, J.P. Youngblood, Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane, Langmuir. 22 (2006) 11142–11147. https://doi.org/10.1021/la061240g.
[26] B.O. Acton, G.G. Ting, P.J. Shamberger, F.S. Ohuchi, H. Ma, A.K.-Y. Jen, Dielectric Surface-Controlled Low-Voltage Organic Transistors via n-Alkyl Phosphonic Acid Self-Assembled Monolayers on High-k Metal Oxide, ACS Appl. Mater. Interfaces. 2 (2010) 511–520. https://doi.org/10.1021/am9007648.
[27] E.L. Hanson, J. Schwartz, B. Nickel, N. Koch, M.F. Danisman, Bonding Self-Assembled, Compact Organophosphonate Monolayers to the Native Oxide Surface of Silicon, J. Am. Chem. Soc. 125 (2003) 16074–16080. https://doi.org/10.1021/ja035956z.
[28] P.J. Hotchkiss, S.C. Jones, S.A. Paniagua, A. Sharma, B. Kippelen, N.R. Armstrong, S.R. Marder, The Modification of Indium Tin Oxide with Phosphonic Acids: Mechanism of Binding, Tuning of Surface Properties, and Potential for Use in Organic Electronic Applications, Acc. Chem. Res. 45 (2012) 337–346. https://doi.org/10.1021/ar200119g.
[29] P. Silberzan, L. Leger, D. Ausserre, J.J. Benattar, Silanation of silica surfaces. A new method of constructing pure or mixed monolayers, Langmuir. 7 (1991) 1647–1651. https://doi.org/10.1021/la00056a017.
[30] E. Smecca, A. Motta, M.E. Fragalà, Y. Aleeva, G.G. Condorelli, Spectroscopic and Theoretical Study of the Grafting Modes of Phosphonic Acids on ZnO Nanorods, J. Phys. Chem. C. 117 (2013) 5364–5372. https://doi.org/10.1021/jp308983p.
[31] D.O. Hutchins, T. Weidner, J. Baio, B. Polishak, O. Acton, N. Cernetic, H. Ma, A.K.-Y. Jen, Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance, J. Mater. Chem. C. 1 (2012) 101–113. https://doi.org/10.1039/C2TC00378C.
[32] Z.Q. Wei, C. Wang, C.F. Zhu, C.Q. Zhou, B. Xu, C.L. Bai, Study on single-bond interaction between amino-terminated organosilane self-assembled monolayers by atomic force microscopy, Surface Science. 459 (2000) 401–412. https://doi.org/10.1016/S0039-6028(00)00474-X.
[33] J.W. Moore, C.L. Stanitski, Chemistry: The Molecular Science, Cengage Learning, 2014.
[34] R.H. Petrucci, F.G. Herring, J.D. Madura, General Chemistry: Principles and Modern Applications (10th Edition), Pearson Prentice Hall, 2010. http://113.161.190.196:8080/thuvienso/handle/123456789/999 (accessed June 1, 2022).
[35] A. Vega, P. Thissen, Y.J. Chabal, Environment-Controlled Tethering by Aggregation and Growth of Phosphonic Acid Monolayers on Silicon Oxide, Langmuir. 28 (2012) 8046–8051. https://doi.org/10.1021/la300709n.
[36] I. Gouzman, M. Dubey, M.D. Carolus, J. Schwartz, S.L. Bernasek, Monolayer vs. multilayer self-assembled alkylphosphonate films: X-ray photoelectron spectroscopy studies, Surface Science. 600 (2006) 773–781. https://doi.org/10.1016/j.susc.2005.11.030.
[37] R. Chau, Process and Packaging Innovations for Moore’s Law Continuation and Beyond, in: 2019 IEEE International Electron Devices Meeting (IEDM), 2019: p. 1.1.1-1.1.6. https://doi.org/10.1109/IEDM19573.2019.8993462.
[38] A. Mameli, B. Karasulu, M.A. Verheijen, B. Barcones, B. Macco, A.J.M. Mackus, W.M.M.E. Kessels, F. Roozeboom, Area-Selective Atomic Layer Deposition of ZnO by Area Activation Using Electron Beam-Induced Deposition, Chem. Mater. 31 (2019) 1250–1257. https://doi.org/10.1021/acs.chemmater.8b03165.
[39] J.-M. Lin, A.V. Teplyakov, J.C.F. Rodríguez-Reyes, Competing reactions during metalorganic deposition: Ligand-exchange versus direct reaction with the substrate surface, Journal of Vacuum Science & Technology A. 31 (2013) 021401. https://doi.org/10.1116/1.4774031.
[40] L. Nyns, A. Delabie, M. Caymax, M.M. Heyns, S.V. Elshocht, C. Vinckier, S.D. Gendt, HfO2 Atomic Layer Deposition Using HfCl4 ∕ H2O : The First Reaction Cycle, J. Electrochem. Soc. 155 (2008) G269. https://doi.org/10.1149/1.2980427.
[41] E. Färm, M. Kemell, M. Ritala, M. Leskelä, Selective-area atomic layer deposition with microcontact printed self-assembled octadecyltrichlorosilane monolayers as mask layers, Thin Solid Films. 517 (2008) 972–975. https://doi.org/10.1016/j.tsf.2008.08.191.
[42] C. Prasittichai, K.L. Pickrahn, F.S. Minaye Hashemi, D.S. Bergsman, S.F. Bent, Improving Area-Selective Molecular Layer Deposition by Selective SAM Removal, ACS Appl. Mater. Interfaces. 6 (2014) 17831–17836. https://doi.org/10.1021/am504441e.
[43] M. Pasquali, S. De Gendt, S. Armini, Understanding the impact of Cu surface pre-treatment on Octadecanethiol-derived self-assembled monolayer as a mask for area-selective deposition, Applied Surface Science. 540 (2021) 148307. https://doi.org/10.1016/j.apsusc.2020.148307.
[44] U. Srinivasan, M.R. Houston, R.T. Howe, R. Maboudian, Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines, Journal of Microelectromechanical Systems. 7 (1998) 252–260. https://doi.org/10.1109/84.679393.
[45] M. Calistri-Yeh, E.J. Kramer, R. Sharma, W. Zhao, M.H. Rafailovich, J. Sokolov, J.D. Brock, Thermal Stability of Self-Assembled Monolayers from Alkylchlorosilanes, Langmuir. 12 (1996) 2747–2755. https://doi.org/10.1021/la950518u.
[46] E. Delamarche, B. Michel, H. Kang, Ch. Gerber, Thermal Stability of Self-Assembled Monolayers, Langmuir. 10 (1994) 4103–4108. https://doi.org/10.1021/la00023a033.
[47] S.A. Kulkarni, S.A. Mirji, A.B. Mandale, K.P. Vijayamohanan, Thermal stability of self-assembled octadecyltrichlorosilane monolayers on planar and curved silica surfaces, Thin Solid Films. 496 (2006) 420–425. https://doi.org/10.1016/j.tsf.2005.08.321.
[48] D. Barreca, G. Carraro, M.E. A. Warwick, K. Kaunisto, A. Gasparotto, V. Gombac, C. Sada, S. Turner, G.V. Tendeloo, C. Maccato, P. Fornasiero, Fe 2 O 3 –TiO 2 nanosystems by a hybrid PE-CVD/ALD approach: controllable synthesis, growth mechanism, and photocatalytic properties, CrystEngComm. 17 (2015) 6219–6226. https://doi.org/10.1039/C5CE00883B.
[49] P.E. Laibinis, J.J. Hickman, M.S. Wrighton, G.M. Whitesides, Orthogonal Self-Assembled Monolayers: Alkanethiols on Gold and Alkane Carboxylic Acids on Alumina, Science. 245 (1989) 845–847. https://doi.org/10.1126/science.245.4920.845.
[50] N. Herzer, C. Haensch, S. Hoeppener, U.S. Schubert, Orthogonal Functionalization of Silicon Substrates Using Self-Assembled Monolayers, Langmuir. 26 (2010) 8358–8365. https://doi.org/10.1021/la9047837.
[51] N. Prathima, M. Harini, N. Rai, R.H. Chandrashekara, K.G. Ayappa, S. Sampath, S.K. Biswas, Thermal Study of Accumulation of Conformational Disorders in the Self-Assembled Monolayers of C8 and C18 Alkanethiols on the Au(111) Surface, Langmuir. 21 (2005) 2364–2374. https://doi.org/10.1021/la048654z.
[52] A. Maestre Caro, Y. Travaly, G. Maes, G. Borghs, S. Armini, Enabling Cu-Cu connection in (dual) damascene interconnects by selective deposition of two different SAM molecules, in: 2011 IEEE International Interconnect Technology Conference, IEEE, Dresden, Germany, 2011: pp. 1–3. https://doi.org/10.1109/IITC.2011.5940263.
[53] A.M. Caro, S. Armini, O. Richard, G. Maes, G. Borghs, C.M. Whelan, Y. Travaly, Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2-Derived Self-Assembled Monolayers, Advanced Functional Materials. 20 (2010) 1125–1131. https://doi.org/10.1002/adfm.200902072.
[54] S. Jang, D. Son, S. Hwang, M. Kang, S.-K. Lee, D.-Y. Jeon, S. Bae, S.H. Lee, D.S. Lee, T.-W. Kim, Hybrid dielectrics composed of Al2O3 and phosphonic acid self-assembled monolayers for performance improvement in low voltage organic field effect transistors, Nano Convergence. 5 (2018) 20. https://doi.org/10.1186/s40580-018-0152-3.
[55] T. Shirai, S. Yamauchi, H. Kikuchi, H. Fukumoto, H. Tsukada, T. Agou, Synthesis, characterization, and formation of self-assembled monolayers of a phosphonic acid bearing a vinylene-bridged fluoroalkyl chain, Applied Surface Science. 577 (2022) 151959. https://doi.org/10.1016/j.apsusc.2021.151959.
[56] Corrosion Inhibition by Thiol-Derived SAMs for Enhanced Wire Bonding on Cu Surfaces - IOPscience, (n.d.). https://iopscience.iop.org/article/10.1149/1.1635387/meta (accessed April 12, 2022).
[57] A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev. 96 (1996) 1533–1554. https://doi.org/10.1021/cr9502357.
[58] N.R. Wolf, X. Yuan, H. Hassani, F. Milos, D. Mayer, U. Breuer, A. Offenhäusser, R. Wördenweber, Surface Functionalization of Platinum Electrodes with APTES for Bioelectronic Applications, ACS Appl. Bio Mater. 3 (2020) 7113–7121. https://doi.org/10.1021/acsabm.0c00936.
[59] Y. Chung, S. Lee, C. Mahata, J. Seo, S.-M. Lim, M. Jeong, H. Jung, Y.-C. Joo, Y.-B. Park, H. Kim, T. Lee, Coupled self-assembled monolayer for enhancement of Cu diffusion barrier and adhesion properties, RSC Adv. 4 (2014) 60123–60130. https://doi.org/10.1039/C4RA08134J.
[60] Y.-P. Zhang, M. Chandra Sil, C.-M. Chen, Organosiloxane nanolayer as diffusion barrier for Cu metallization on Si, Applied Surface Science. 567 (2021) 150800. https://doi.org/10.1016/j.apsusc.2021.150800.
[61] J. Ederer, P. Janoš, P. Ecorchard, J. Tolasz, V. Štengl, H. Beneš, M. Perchacz, O. Pop-Georgievski, Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation, RSC Adv. 7 (2017) 12464–12473. https://doi.org/10.1039/C6RA28745J.
[62] K. Bierbaum, M. Kinzler, Ch. Woell, M. Grunze, G. Haehner, S. Heid, F. Effenberger, A Near Edge X-ray Absorption Fine Structure Spectroscopy and X-ray Photoelectron Spectroscopy Study of the Film Properties of Self-Assembled Monolayers of Organosilanes on Oxidized Si(100), Langmuir. 11 (1995) 512–518. https://doi.org/10.1021/la00002a025.
[63] P.M. Dietrich, S. Glamsch, C. Ehlert, A. Lippitz, N. Kulak, W.E.S. Unger, Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon, Applied Surface Science. 363 (2016) 406–411. https://doi.org/10.1016/j.apsusc.2015.12.052.
[64] D.S. Jensen, S.S. Kanyal, N. Madaan, M.A. Vail, A.E. Dadson, M.H. Engelhard, M.R. Linford, Silicon (100)/SiO2 by XPS, Surf. Sci. Spectra. 20 (2013) 36–42. https://doi.org/10.1116/11.20121101.
[65] Y. Sun, M. Yanagisawa, M. Kunimoto, M. Nakamura, T. Homma, Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering, Applied Surface Science. 363 (2016) 572–577. https://doi.org/10.1016/j.apsusc.2015.12.035.
[66] G. Jakša, B. Štefane, J. Kovač, XPS and AFM characterization of aminosilanes with different numbers of bonding sites on a silicon wafer, Surface and Interface Analysis. 45 (2013) 1709–1713. https://doi.org/10.1002/sia.5311.
[67] M. Kim, F. Basarir, J. Park, T.-H. Yoon, Y.H. Jang, Computational Calculation of thickness of Self-Assembled Monolayer of 3- aminopropyltriethoxysilane on Quartz (100), (n.d.) 3.
[68] M.-H. Jung, H.-S. Choi, Characterization of octadecyltrichlorosilane self-assembled monolayers on silicon (100) surface, Korean J. Chem. Eng. 26 (2009) 1778–1784. https://doi.org/10.1007/s11814-009-0249-9.
[69] Z. Chen, W. Chen, D. Jia, Y. Liu, A. Zhang, T. Wen, J. Liu, Y. Ai, W. Song, X. Wang, N, P, and S Codoped Graphene-Like Carbon Nanosheets for Ultrafast Uranium (VI) Capture with High Capacity, Advanced Science. 5 (2018) 1800235. https://doi.org/10.1002/advs.201800235.
[70] C. Yee, G. Kataby, A. Ulman, T. Prozorov, H. White, A. King, M. Rafailovich, J. Sokolov, A. Gedanken, Self-Assembled Monolayers of Alkanesulfonic and -phosphonic Acids on Amorphous Iron Oxide Nanoparticles, Langmuir. 15 (1999) 7111–7115. https://doi.org/10.1021/la990663y.
[71] C.L. Perkins, Molecular Anchors for Self-Assembled Monolayers on ZnO: A Direct Comparison of the Thiol and Phosphonic Acid Moieties, J. Phys. Chem. C. 113 (2009) 18276–18286. https://doi.org/10.1021/jp906013r.
[72] S. Bulou, E. Lecoq, F. Loyer, G. Frache, T. Fouquet, M. Gueye, T. Belmonte, P. Choquet, Study of a pulsed post‐discharge plasma deposition process of APTES: synthesis of highly organic pp‐APTES thin films with NH 2 functionalized polysilsesquioxane evidences, Plasma Process Polym. 16 (2019) 1800177. https://doi.org/10.1002/ppap.201800177.
[73] T. Kim, K.C. Chan, R.M. Crooks, Polymeric Self-Assembled Monolayers. 4. Chemical, Electrochemical, and Thermal Stability of ω-Functionalized, Self-Assembled Diacetylenic and Polydiacetylenic Monolayers, J. Am. Chem. Soc. 119 (1997) 189–193. https://doi.org/10.1021/ja9617956.
[74] E. Hoque, J.A. DeRose, B. Bhushan, K.W. Hipps, Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces, Ultramicroscopy. 109 (2009) 1015–1022. https://doi.org/10.1016/j.ultramic.2009.03.033.
[75] W. Zhao, M. Göthelid, S. Hosseinpour, M.B. Johansson, G. Li, C. Leygraf, C.M. Johnson, The nature of self-assembled octadecylphosphonic acid (ODPA) layers on copper substrates, Journal of Colloid and Interface Science. 581 (2021) 816–825. https://doi.org/10.1016/j.jcis.2020.07.058.
[76] J. Denayer, J. Delhalle, Z. Mekhalif, Comparative study of copper surface treatment with self-assembled monolayers of aliphatic thiol, dithiol and dithiocarboxylic acid, Journal of Electroanalytical Chemistry. 637 (2009) 43–49. https://doi.org/10.1016/j.jelechem.2009.09.028.
[77] Y. Li, M. Kong, J. Hu, J. Zhou, Carbon‐Microcuboid‐Supported Phosphorus‐Coordinated Single Atomic Copper with Ultrahigh Content and Its Abnormal Modification to Na Storage Behaviors, Adv. Energy Mater. 10 (2020) 2000400. https://doi.org/10.1002/aenm.202000400.
[78] S. Sharma, M. Kumar, S. Rani, A. Singh, B. Prasad, D. Kumar, Deposition and evaluation of self assembled monolayer as diffusion barrier for copper metallization for integrated circuits, in: Bikaner, Rajasthan, India, 2013: pp. 1163–1164. https://doi.org/10.1063/1.4810651.
[79] N. Shin, K.S. Schellhammer, M.H. Lee, J. Zessin, M. Hambsch, A. Salleo, F. Ortmann, S.C.B. Mannsfeld, Electronic Doping and Enhancement of n-Channel Polycrystalline OFET Performance through Gate Oxide Modifications with Aminosilanes, Advanced Materials Interfaces. 8 (2021) 2100320. https://doi.org/10.1002/admi.202100320.
[80] A. Maestre Caro, G. Maes, G. Borghs, C.M. Whelan, Screening self-assembled monolayers as Cu diffusion barriers, Microelectronic Engineering. 85 (2008) 2047–2050. https://doi.org/10.1016/j.mee.2008.04.014.
[81] F. Li, E. Shishkin, M.A. Mastro, J.K. Hite, C.R. Eddy, J.H. Edgar, T. Ito, Photopolymerization of Self-Assembled Monolayers of Diacetylenic Alkylphosphonic Acids on Group-III Nitride Substrates, Langmuir. 26 (2010) 10725–10730. https://doi.org/10.1021/la100273q.
[82] D.N. Batchelder, S.D. Evans, T.L. Freeman, L. Haeussling, H. Ringsdorf, H. Wolf, Self-Assembled Monolayers containing Polydiacetylenes, J. Am. Chem. Soc. 116 (1994) 1050–1053. https://doi.org/10.1021/ja00082a028.
[83] M.A. Reppy, B.A. Pindzola, Biosensing with polydiacetylene materials: structures, optical properties and applications, Chem. Commun. (2007) 4317–4338. https://doi.org/10.1039/B703691D.
[84] Supramolecular Materials via Polymerization of Mesophases of Hydrated Amphiphiles | Chemical Reviews, (n.d.). https://pubs.acs.org/doi/10.1021/cr000071g (accessed July 7, 2022).
[85] K. Lionti, N. Arellano, N. Lanzillo, S. Nguyen, P.S. Bhosale, H. Bui, T. Topuria, R.J. Wojtecki, Area-Selective Deposition of Tantalum Nitride with Polymerizable Monolayers: From Liquid to Vapor Phase Inhibitors, Chem. Mater. 34 (2022) 2919–2930. https://doi.org/10.1021/acs.chemmater.1c03436.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *