|
[1] G.N. Parsons, R.D. Clark, Area-Selective Deposition: Fundamentals, Applications, and Future Outlook, Chem. Mater. 32 (2020) 4920–4953. https://doi.org/10.1021/acs.chemmater.0c00722. [2] D. Bobb-Semple, K.L. Nardi, N. Draeger, D.M. Hausmann, S.F. Bent, Area-Selective Atomic Layer Deposition Assisted by Self-Assembled Monolayers: A Comparison of Cu, Co, W, and Ru, Chem. Mater. 31 (2019) 1635–1645. https://doi.org/10.1021/acs.chemmater.8b04926. [3] E. Färm, M. Vehkamäki, M. Ritala, M. Leskelä, Passivation of copper surfaces for selective-area ALD using a thiol self-assembled monolayer, Semicond. Sci. Technol. 27 (2012) 074004. https://doi.org/10.1088/0268-1242/27/7/074004. [4] F.S.M. Hashemi, C. Prasittichai, S.F. Bent, A New Resist for Area Selective Atomic and Molecular Layer Deposition on Metal–Dielectric Patterns, J. Phys. Chem. C. 118 (2014) 10957–10962. https://doi.org/10.1021/jp502669f. [5] J. Käshammer, P. Wohlfart, J. Weiß, C. Winter, R. Fischer, S. Mittler-Neher, Selective gold deposition via CVD onto self-assembled organic monolayers, Optical Materials. 9 (1998) 406–410. https://doi.org/10.1016/S0925-3467(97)00105-5. [6] A. Chandekar, S.K. Sengupta, J.E. Whitten, Thermal stability of thiol and silane monolayers: A comparative study, Applied Surface Science. 256 (2010) 2742–2749. https://doi.org/10.1016/j.apsusc.2009.11.020. [7] X. Wan, I. Lieberman, A. Asyuda, S. Resch, H. Seim, P. Kirsch, M. Zharnikov, Thermal Stability of Phosphonic Acid Self-Assembled Monolayers on Alumina Substrates, J. Phys. Chem. C. 124 (2020) 2531–2542. https://doi.org/10.1021/acs.jpcc.9b10628. [8] H.L. Chen, H.F. Lee, W.C. Chao, C.I. Hsieh, F.H. Ko, T.C. Chu, Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 22 (2004) 3359–3362. https://doi.org/10.1116/1.1824059. [9] C.M. Whelan, M. Kinsella, H.M. Ho, K. Maex, Corrosion Inhibition by Thiol-Derived SAMs for Enhanced Wire Bonding on Cu Surfaces, J. Electrochem. Soc. 151 (2004) B33. https://doi.org/10.1149/1.1635387. [10] S. Casalini, C.A. Bortolotti, F. Leonardi, F. Biscarini, Self-assembled monolayers in organic electronics, Chem. Soc. Rev. 46 (2017) 40–71. https://doi.org/10.1039/C6CS00509H. [11] Y. Xia, M. Mrksich, E. Kim, G.M. Whitesides, Microcontact Printing of Octadecylsiloxane on the Surface of Silicon Dioxide and Its Application in Microfabrication, J. Am. Chem. Soc. 117 (1995) 9576–9577. https://doi.org/10.1021/ja00142a031. [12] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev. 105 (2005) 1103–1170. https://doi.org/10.1021/cr0300789. [13] R. Wang, K. Jakhar, S. Ahmed, D.S. Antao, Elucidating the Mechanism of Condensation-Mediated Degradation of Organofunctional Silane Self-Assembled Monolayer Coatings, ACS Appl. Mater. Interfaces. 13 (2021) 34923–34934. https://doi.org/10.1021/acsami.1c08496. [14] I. Zyulkov, V. Madhiwala, E. Voronina, M. Snelgrove, J. Bogan, R. O’Connor, S. De Gendt, S. Armini, Area-Selective ALD of Ru on Nanometer-Scale Cu Lines through Dimerization of Amino-Functionalized Alkoxy Silane Passivation Films, ACS Appl. Mater. Interfaces. 12 (2020) 4678–4688. https://doi.org/10.1021/acsami.9b14596. [15] T. Abu-Husein, S. Schuster, D.A. Egger, M. Kind, T. Santowski, A. Wiesner, R. Chiechi, E. Zojer, A. Terfort, M. Zharnikov, The Effects of Embedded Dipoles in Aromatic Self-Assembled Monolayers, Advanced Functional Materials. 25 (2015) 3943–3957. https://doi.org/10.1002/adfm.201500899. [16] Y. Xu, C.B. Musgrave, A DFT Study of the Al 2 O 3 Atomic Layer Deposition on SAMs: Effect of SAM Termination, Chem. Mater. 16 (2004) 646–653. https://doi.org/10.1021/cm035009p. [17] D. Aldakov, Y. Bonnassieux, B. Geffroy, S. Palacin, Selective Electroless Copper Deposition on Self-Assembled Dithiol Monolayers, ACS Appl. Mater. Interfaces. 1 (2009) 584–589. https://doi.org/10.1021/am8001346. [18] M. Singh, N. Kaur, E. Comini, The role of self-assembled monolayers in electronic devices, J. Mater. Chem. C. 8 (2020) 3938–3955. https://doi.org/10.1039/D0TC00388C. [19] M.-C. Bourg, A. Badia, R.B. Lennox, Gold−Sulfur Bonding in 2D and 3D Self-Assembled Monolayers: XPS Characterization, J. Phys. Chem. B. 104 (2000) 6562–6567. https://doi.org/10.1021/jp9935337. [20] C. Vericat, M. E. Vela, G. Benitez, P. Carro, R. C. Salvarezza, Self-assembled monolayers of thiols and dithiols on gold : new challenges for a well-known system, Chemical Society Reviews. 39 (2010) 1805–1834. https://doi.org/10.1039/B907301A. [21] S.C.T. Kwok, F. Ciucci, M.M.F. Yuen, Chemisorption Threshold of Thiol-based Monolayer on Copper: Effect of Electric Potential and Elevated Temperature, Electrochimica Acta. 198 (2016) 185–194. https://doi.org/10.1016/j.electacta.2016.03.068. [22] S.D. Conzone, C.G. Pantano, Glass slides to DNA microarrays, Materials Today. 7 (2004) 20–26. https://doi.org/10.1016/S1369-7021(04)00122-1. [23] X. Zeng, G. Xu, Y. Gao, Y. An, Surface Wettability of (3-Aminopropyl)triethoxysilane Self-Assembled Monolayers, J. Phys. Chem. B. 115 (2011) 450–454. https://doi.org/10.1021/jp109259b. [24] R.M. Pasternack, S. Rivillon Amy, Y.J. Chabal, Attachment of 3-(Aminopropyl)triethoxysilane on Silicon Oxide Surfaces: Dependence on Solution Temperature, Langmuir. 24 (2008) 12963–12971. https://doi.org/10.1021/la8024827. [25] J.A. Howarter, J.P. Youngblood, Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane, Langmuir. 22 (2006) 11142–11147. https://doi.org/10.1021/la061240g. [26] B.O. Acton, G.G. Ting, P.J. Shamberger, F.S. Ohuchi, H. Ma, A.K.-Y. Jen, Dielectric Surface-Controlled Low-Voltage Organic Transistors via n-Alkyl Phosphonic Acid Self-Assembled Monolayers on High-k Metal Oxide, ACS Appl. Mater. Interfaces. 2 (2010) 511–520. https://doi.org/10.1021/am9007648. [27] E.L. Hanson, J. Schwartz, B. Nickel, N. Koch, M.F. Danisman, Bonding Self-Assembled, Compact Organophosphonate Monolayers to the Native Oxide Surface of Silicon, J. Am. Chem. Soc. 125 (2003) 16074–16080. https://doi.org/10.1021/ja035956z. [28] P.J. Hotchkiss, S.C. Jones, S.A. Paniagua, A. Sharma, B. Kippelen, N.R. Armstrong, S.R. Marder, The Modification of Indium Tin Oxide with Phosphonic Acids: Mechanism of Binding, Tuning of Surface Properties, and Potential for Use in Organic Electronic Applications, Acc. Chem. Res. 45 (2012) 337–346. https://doi.org/10.1021/ar200119g. [29] P. Silberzan, L. Leger, D. Ausserre, J.J. Benattar, Silanation of silica surfaces. A new method of constructing pure or mixed monolayers, Langmuir. 7 (1991) 1647–1651. https://doi.org/10.1021/la00056a017. [30] E. Smecca, A. Motta, M.E. Fragalà, Y. Aleeva, G.G. Condorelli, Spectroscopic and Theoretical Study of the Grafting Modes of Phosphonic Acids on ZnO Nanorods, J. Phys. Chem. C. 117 (2013) 5364–5372. https://doi.org/10.1021/jp308983p. [31] D.O. Hutchins, T. Weidner, J. Baio, B. Polishak, O. Acton, N. Cernetic, H. Ma, A.K.-Y. Jen, Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance, J. Mater. Chem. C. 1 (2012) 101–113. https://doi.org/10.1039/C2TC00378C. [32] Z.Q. Wei, C. Wang, C.F. Zhu, C.Q. Zhou, B. Xu, C.L. Bai, Study on single-bond interaction between amino-terminated organosilane self-assembled monolayers by atomic force microscopy, Surface Science. 459 (2000) 401–412. https://doi.org/10.1016/S0039-6028(00)00474-X. [33] J.W. Moore, C.L. Stanitski, Chemistry: The Molecular Science, Cengage Learning, 2014. [34] R.H. Petrucci, F.G. Herring, J.D. Madura, General Chemistry: Principles and Modern Applications (10th Edition), Pearson Prentice Hall, 2010. http://113.161.190.196:8080/thuvienso/handle/123456789/999 (accessed June 1, 2022). [35] A. Vega, P. Thissen, Y.J. Chabal, Environment-Controlled Tethering by Aggregation and Growth of Phosphonic Acid Monolayers on Silicon Oxide, Langmuir. 28 (2012) 8046–8051. https://doi.org/10.1021/la300709n. [36] I. Gouzman, M. Dubey, M.D. Carolus, J. Schwartz, S.L. Bernasek, Monolayer vs. multilayer self-assembled alkylphosphonate films: X-ray photoelectron spectroscopy studies, Surface Science. 600 (2006) 773–781. https://doi.org/10.1016/j.susc.2005.11.030. [37] R. Chau, Process and Packaging Innovations for Moore’s Law Continuation and Beyond, in: 2019 IEEE International Electron Devices Meeting (IEDM), 2019: p. 1.1.1-1.1.6. https://doi.org/10.1109/IEDM19573.2019.8993462. [38] A. Mameli, B. Karasulu, M.A. Verheijen, B. Barcones, B. Macco, A.J.M. Mackus, W.M.M.E. Kessels, F. Roozeboom, Area-Selective Atomic Layer Deposition of ZnO by Area Activation Using Electron Beam-Induced Deposition, Chem. Mater. 31 (2019) 1250–1257. https://doi.org/10.1021/acs.chemmater.8b03165. [39] J.-M. Lin, A.V. Teplyakov, J.C.F. Rodríguez-Reyes, Competing reactions during metalorganic deposition: Ligand-exchange versus direct reaction with the substrate surface, Journal of Vacuum Science & Technology A. 31 (2013) 021401. https://doi.org/10.1116/1.4774031. [40] L. Nyns, A. Delabie, M. Caymax, M.M. Heyns, S.V. Elshocht, C. Vinckier, S.D. Gendt, HfO2 Atomic Layer Deposition Using HfCl4 ∕ H2O : The First Reaction Cycle, J. Electrochem. Soc. 155 (2008) G269. https://doi.org/10.1149/1.2980427. [41] E. Färm, M. Kemell, M. Ritala, M. Leskelä, Selective-area atomic layer deposition with microcontact printed self-assembled octadecyltrichlorosilane monolayers as mask layers, Thin Solid Films. 517 (2008) 972–975. https://doi.org/10.1016/j.tsf.2008.08.191. [42] C. Prasittichai, K.L. Pickrahn, F.S. Minaye Hashemi, D.S. Bergsman, S.F. Bent, Improving Area-Selective Molecular Layer Deposition by Selective SAM Removal, ACS Appl. Mater. Interfaces. 6 (2014) 17831–17836. https://doi.org/10.1021/am504441e. [43] M. Pasquali, S. De Gendt, S. Armini, Understanding the impact of Cu surface pre-treatment on Octadecanethiol-derived self-assembled monolayer as a mask for area-selective deposition, Applied Surface Science. 540 (2021) 148307. https://doi.org/10.1016/j.apsusc.2020.148307. [44] U. Srinivasan, M.R. Houston, R.T. Howe, R. Maboudian, Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines, Journal of Microelectromechanical Systems. 7 (1998) 252–260. https://doi.org/10.1109/84.679393. [45] M. Calistri-Yeh, E.J. Kramer, R. Sharma, W. Zhao, M.H. Rafailovich, J. Sokolov, J.D. Brock, Thermal Stability of Self-Assembled Monolayers from Alkylchlorosilanes, Langmuir. 12 (1996) 2747–2755. https://doi.org/10.1021/la950518u. [46] E. Delamarche, B. Michel, H. Kang, Ch. Gerber, Thermal Stability of Self-Assembled Monolayers, Langmuir. 10 (1994) 4103–4108. https://doi.org/10.1021/la00023a033. [47] S.A. Kulkarni, S.A. Mirji, A.B. Mandale, K.P. Vijayamohanan, Thermal stability of self-assembled octadecyltrichlorosilane monolayers on planar and curved silica surfaces, Thin Solid Films. 496 (2006) 420–425. https://doi.org/10.1016/j.tsf.2005.08.321. [48] D. Barreca, G. Carraro, M.E. A. Warwick, K. Kaunisto, A. Gasparotto, V. Gombac, C. Sada, S. Turner, G.V. Tendeloo, C. Maccato, P. Fornasiero, Fe 2 O 3 –TiO 2 nanosystems by a hybrid PE-CVD/ALD approach: controllable synthesis, growth mechanism, and photocatalytic properties, CrystEngComm. 17 (2015) 6219–6226. https://doi.org/10.1039/C5CE00883B. [49] P.E. Laibinis, J.J. Hickman, M.S. Wrighton, G.M. Whitesides, Orthogonal Self-Assembled Monolayers: Alkanethiols on Gold and Alkane Carboxylic Acids on Alumina, Science. 245 (1989) 845–847. https://doi.org/10.1126/science.245.4920.845. [50] N. Herzer, C. Haensch, S. Hoeppener, U.S. Schubert, Orthogonal Functionalization of Silicon Substrates Using Self-Assembled Monolayers, Langmuir. 26 (2010) 8358–8365. https://doi.org/10.1021/la9047837. [51] N. Prathima, M. Harini, N. Rai, R.H. Chandrashekara, K.G. Ayappa, S. Sampath, S.K. Biswas, Thermal Study of Accumulation of Conformational Disorders in the Self-Assembled Monolayers of C8 and C18 Alkanethiols on the Au(111) Surface, Langmuir. 21 (2005) 2364–2374. https://doi.org/10.1021/la048654z. [52] A. Maestre Caro, Y. Travaly, G. Maes, G. Borghs, S. Armini, Enabling Cu-Cu connection in (dual) damascene interconnects by selective deposition of two different SAM molecules, in: 2011 IEEE International Interconnect Technology Conference, IEEE, Dresden, Germany, 2011: pp. 1–3. https://doi.org/10.1109/IITC.2011.5940263. [53] A.M. Caro, S. Armini, O. Richard, G. Maes, G. Borghs, C.M. Whelan, Y. Travaly, Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2-Derived Self-Assembled Monolayers, Advanced Functional Materials. 20 (2010) 1125–1131. https://doi.org/10.1002/adfm.200902072. [54] S. Jang, D. Son, S. Hwang, M. Kang, S.-K. Lee, D.-Y. Jeon, S. Bae, S.H. Lee, D.S. Lee, T.-W. Kim, Hybrid dielectrics composed of Al2O3 and phosphonic acid self-assembled monolayers for performance improvement in low voltage organic field effect transistors, Nano Convergence. 5 (2018) 20. https://doi.org/10.1186/s40580-018-0152-3. [55] T. Shirai, S. Yamauchi, H. Kikuchi, H. Fukumoto, H. Tsukada, T. Agou, Synthesis, characterization, and formation of self-assembled monolayers of a phosphonic acid bearing a vinylene-bridged fluoroalkyl chain, Applied Surface Science. 577 (2022) 151959. https://doi.org/10.1016/j.apsusc.2021.151959. [56] Corrosion Inhibition by Thiol-Derived SAMs for Enhanced Wire Bonding on Cu Surfaces - IOPscience, (n.d.). https://iopscience.iop.org/article/10.1149/1.1635387/meta (accessed April 12, 2022). [57] A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev. 96 (1996) 1533–1554. https://doi.org/10.1021/cr9502357. [58] N.R. Wolf, X. Yuan, H. Hassani, F. Milos, D. Mayer, U. Breuer, A. Offenhäusser, R. Wördenweber, Surface Functionalization of Platinum Electrodes with APTES for Bioelectronic Applications, ACS Appl. Bio Mater. 3 (2020) 7113–7121. https://doi.org/10.1021/acsabm.0c00936. [59] Y. Chung, S. Lee, C. Mahata, J. Seo, S.-M. Lim, M. Jeong, H. Jung, Y.-C. Joo, Y.-B. Park, H. Kim, T. Lee, Coupled self-assembled monolayer for enhancement of Cu diffusion barrier and adhesion properties, RSC Adv. 4 (2014) 60123–60130. https://doi.org/10.1039/C4RA08134J. [60] Y.-P. Zhang, M. Chandra Sil, C.-M. Chen, Organosiloxane nanolayer as diffusion barrier for Cu metallization on Si, Applied Surface Science. 567 (2021) 150800. https://doi.org/10.1016/j.apsusc.2021.150800. [61] J. Ederer, P. Janoš, P. Ecorchard, J. Tolasz, V. Štengl, H. Beneš, M. Perchacz, O. Pop-Georgievski, Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation, RSC Adv. 7 (2017) 12464–12473. https://doi.org/10.1039/C6RA28745J. [62] K. Bierbaum, M. Kinzler, Ch. Woell, M. Grunze, G. Haehner, S. Heid, F. Effenberger, A Near Edge X-ray Absorption Fine Structure Spectroscopy and X-ray Photoelectron Spectroscopy Study of the Film Properties of Self-Assembled Monolayers of Organosilanes on Oxidized Si(100), Langmuir. 11 (1995) 512–518. https://doi.org/10.1021/la00002a025. [63] P.M. Dietrich, S. Glamsch, C. Ehlert, A. Lippitz, N. Kulak, W.E.S. Unger, Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon, Applied Surface Science. 363 (2016) 406–411. https://doi.org/10.1016/j.apsusc.2015.12.052. [64] D.S. Jensen, S.S. Kanyal, N. Madaan, M.A. Vail, A.E. Dadson, M.H. Engelhard, M.R. Linford, Silicon (100)/SiO2 by XPS, Surf. Sci. Spectra. 20 (2013) 36–42. https://doi.org/10.1116/11.20121101. [65] Y. Sun, M. Yanagisawa, M. Kunimoto, M. Nakamura, T. Homma, Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering, Applied Surface Science. 363 (2016) 572–577. https://doi.org/10.1016/j.apsusc.2015.12.035. [66] G. Jakša, B. Štefane, J. Kovač, XPS and AFM characterization of aminosilanes with different numbers of bonding sites on a silicon wafer, Surface and Interface Analysis. 45 (2013) 1709–1713. https://doi.org/10.1002/sia.5311. [67] M. Kim, F. Basarir, J. Park, T.-H. Yoon, Y.H. Jang, Computational Calculation of thickness of Self-Assembled Monolayer of 3- aminopropyltriethoxysilane on Quartz (100), (n.d.) 3. [68] M.-H. Jung, H.-S. Choi, Characterization of octadecyltrichlorosilane self-assembled monolayers on silicon (100) surface, Korean J. Chem. Eng. 26 (2009) 1778–1784. https://doi.org/10.1007/s11814-009-0249-9. [69] Z. Chen, W. Chen, D. Jia, Y. Liu, A. Zhang, T. Wen, J. Liu, Y. Ai, W. Song, X. Wang, N, P, and S Codoped Graphene-Like Carbon Nanosheets for Ultrafast Uranium (VI) Capture with High Capacity, Advanced Science. 5 (2018) 1800235. https://doi.org/10.1002/advs.201800235. [70] C. Yee, G. Kataby, A. Ulman, T. Prozorov, H. White, A. King, M. Rafailovich, J. Sokolov, A. Gedanken, Self-Assembled Monolayers of Alkanesulfonic and -phosphonic Acids on Amorphous Iron Oxide Nanoparticles, Langmuir. 15 (1999) 7111–7115. https://doi.org/10.1021/la990663y. [71] C.L. Perkins, Molecular Anchors for Self-Assembled Monolayers on ZnO: A Direct Comparison of the Thiol and Phosphonic Acid Moieties, J. Phys. Chem. C. 113 (2009) 18276–18286. https://doi.org/10.1021/jp906013r. [72] S. Bulou, E. Lecoq, F. Loyer, G. Frache, T. Fouquet, M. Gueye, T. Belmonte, P. Choquet, Study of a pulsed post‐discharge plasma deposition process of APTES: synthesis of highly organic pp‐APTES thin films with NH 2 functionalized polysilsesquioxane evidences, Plasma Process Polym. 16 (2019) 1800177. https://doi.org/10.1002/ppap.201800177. [73] T. Kim, K.C. Chan, R.M. Crooks, Polymeric Self-Assembled Monolayers. 4. Chemical, Electrochemical, and Thermal Stability of ω-Functionalized, Self-Assembled Diacetylenic and Polydiacetylenic Monolayers, J. Am. Chem. Soc. 119 (1997) 189–193. https://doi.org/10.1021/ja9617956. [74] E. Hoque, J.A. DeRose, B. Bhushan, K.W. Hipps, Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces, Ultramicroscopy. 109 (2009) 1015–1022. https://doi.org/10.1016/j.ultramic.2009.03.033. [75] W. Zhao, M. Göthelid, S. Hosseinpour, M.B. Johansson, G. Li, C. Leygraf, C.M. Johnson, The nature of self-assembled octadecylphosphonic acid (ODPA) layers on copper substrates, Journal of Colloid and Interface Science. 581 (2021) 816–825. https://doi.org/10.1016/j.jcis.2020.07.058. [76] J. Denayer, J. Delhalle, Z. Mekhalif, Comparative study of copper surface treatment with self-assembled monolayers of aliphatic thiol, dithiol and dithiocarboxylic acid, Journal of Electroanalytical Chemistry. 637 (2009) 43–49. https://doi.org/10.1016/j.jelechem.2009.09.028. [77] Y. Li, M. Kong, J. Hu, J. Zhou, Carbon‐Microcuboid‐Supported Phosphorus‐Coordinated Single Atomic Copper with Ultrahigh Content and Its Abnormal Modification to Na Storage Behaviors, Adv. Energy Mater. 10 (2020) 2000400. https://doi.org/10.1002/aenm.202000400. [78] S. Sharma, M. Kumar, S. Rani, A. Singh, B. Prasad, D. Kumar, Deposition and evaluation of self assembled monolayer as diffusion barrier for copper metallization for integrated circuits, in: Bikaner, Rajasthan, India, 2013: pp. 1163–1164. https://doi.org/10.1063/1.4810651. [79] N. Shin, K.S. Schellhammer, M.H. Lee, J. Zessin, M. Hambsch, A. Salleo, F. Ortmann, S.C.B. Mannsfeld, Electronic Doping and Enhancement of n-Channel Polycrystalline OFET Performance through Gate Oxide Modifications with Aminosilanes, Advanced Materials Interfaces. 8 (2021) 2100320. https://doi.org/10.1002/admi.202100320. [80] A. Maestre Caro, G. Maes, G. Borghs, C.M. Whelan, Screening self-assembled monolayers as Cu diffusion barriers, Microelectronic Engineering. 85 (2008) 2047–2050. https://doi.org/10.1016/j.mee.2008.04.014. [81] F. Li, E. Shishkin, M.A. Mastro, J.K. Hite, C.R. Eddy, J.H. Edgar, T. Ito, Photopolymerization of Self-Assembled Monolayers of Diacetylenic Alkylphosphonic Acids on Group-III Nitride Substrates, Langmuir. 26 (2010) 10725–10730. https://doi.org/10.1021/la100273q. [82] D.N. Batchelder, S.D. Evans, T.L. Freeman, L. Haeussling, H. Ringsdorf, H. Wolf, Self-Assembled Monolayers containing Polydiacetylenes, J. Am. Chem. Soc. 116 (1994) 1050–1053. https://doi.org/10.1021/ja00082a028. [83] M.A. Reppy, B.A. Pindzola, Biosensing with polydiacetylene materials: structures, optical properties and applications, Chem. Commun. (2007) 4317–4338. https://doi.org/10.1039/B703691D. [84] Supramolecular Materials via Polymerization of Mesophases of Hydrated Amphiphiles | Chemical Reviews, (n.d.). https://pubs.acs.org/doi/10.1021/cr000071g (accessed July 7, 2022). [85] K. Lionti, N. Arellano, N. Lanzillo, S. Nguyen, P.S. Bhosale, H. Bui, T. Topuria, R.J. Wojtecki, Area-Selective Deposition of Tantalum Nitride with Polymerizable Monolayers: From Liquid to Vapor Phase Inhibitors, Chem. Mater. 34 (2022) 2919–2930. https://doi.org/10.1021/acs.chemmater.1c03436.
|