帳號:guest(3.145.188.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李政倫
作者(外文):Lee, Cheng-Lun
論文名稱(中文):鈷碳複合材料修飾之隔離膜於鋰硫電池中的電化學表現
論文名稱(外文):Electrochemical Performance of Cobalt-Carbon Composites Modified Separators in Lithium Sulfur Batteries
指導教授(中文):蔡哲正
指導教授(外文):Tsai, Cho-Jen
口試委員(中文):葉哲寧
林居南
口試委員(外文):Yeh, Che-Ning
Lin, Ju-Nan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:109031596
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:71
中文關鍵詞:鋰硫電池改質隔離膜金屬有機框架
外文關鍵詞:lithium sulfur batteriesLi-S batteriesmodified separatormetal-organic framework
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鋰硫電池系統被視為極有潛力的下一代儲能系統,因為其具有能量密度大、低成本、環境友好等發展優勢。然而;在發展鋰硫電池的過程中,因鋰多硫化物溶解而引發的穿梭效應,和電極/電解液介面之間的問題,造成長圈數循環時的電容量衰減、庫倫效率下降等負面效應。
在本實驗中,成功合成出了金屬有機框架ZIF-67之衍生物Co-N-GC,並將其作為隔離膜中的改質塗層。此種鈷、氮原子摻雜的碳基複合材料形成了良好的導電網路,同時大比表面積和孔隙度的特質可以容納溶解於電解液中的鋰多硫化物,並且限制其進一步的擴散,進而減緩穿隧效應;而鈷、氮原子的引入,催化著鋰多硫化物的氧化還原反應。將此材料對隔離膜進行修飾後,電池的比容量、高充放電速率下的電性表現和循環穩定性都得到了提升。
經實驗後發現,將適當比例的導電碳黑Ketjen Black和Co-N-GC混合後對隔離膜進行改質,電池能夠展現優秀性能。在70 %的載硫量下,於5.0 C的快速充放電速率下循環200圈後,電池仍保持著636.3 mAhg-1的電容量,且幾乎沒有電容量的衰減。
The rechargeable lithium-sulfur battery is regarded as a promising next-generation energy storage system because of its high energy density, which is up to 2600 Whkg-1, low cost and environmental friendliness. However, the devastating shuttle effect caused by the dissolution of intermediate polysulfides and electrode/electrolyte interface issues impede Li-S batteries from further commercialization. The unfavorable nature of Li-S batteries may lead to capacity decay and low Coulombic efficiency during long cycle.
In this experiment, Co-N-GC, a derivative of metal-organic framework (MOF) ZIF-67, was synthesized and used as a modified coating in separators. The cobalt and nitrogen co-doped carbon-based composite material forms good conductive network. Owing to its large specific surface area and porosity, Co-N-GC is able to accommodate polysulfides dissolved in electrolyte and restrict them from further diffusion, which alleviate the shuttle effect. The introduction of cobalt and nitrogen atoms catalyzes the redox reaction of sulfur species. The uniform dispersion of cobalt nanoparticles within the nitrogen-doped graphitic carbon matrix contributes to the enhancement in specific capacity, rate performance and cycle stability.
It was found that the battery can exhibit excellent electrochemical performance after modifying the separator with the mixture of conductive carbon black (Ketjen Black) and Co-N-GC. Cathodes with 70 wt% sulfur loading can operate at 5.0 C for 200 cycles and after cycle the specific capacity of 636.3 mAhg-1 is still maintained, with nearly no capacity decay.
Abstract…………………………………………………………………………………….i
摘要……………………………………………………………………………………….iii
致謝……………………………………………………………………………………….iv
目錄………………………………………………………………………………………..v
圖目錄………………………………………………………………………………...…viii
表目錄…………………………………………………………………………………….xi
第一章 緒論………………………………………………………………………………1
1.1 儲能系統的發展與應用…………………………………………………….1
1.2 鋰硫電池之運作原理及優缺點分析…………………………………….....3
1.3 鋰硫電池之充放電機制………………………………………………….....5
第二章 文獻回顧…………………………………………………………………………7
2.1 硫主體材料的設計……………………………………………………….....7
2.1.1 抑制穿梭效應之物理方法………………………………………..…7
2.1.2 抑制穿梭效應之化學方法………………………………………....11
2.1.3 鋰硫電池中的催化作用…………………………………………....16
2.2 鋰硫電池中隔離膜的修飾………………………………………………...21
第三章 實驗步驟………………………………………………………………………..25
3.1 研究動機…………………………………………………………………...25
3.2 實驗藥品…………………………………………………………………...25
3.3 材料製備…………………………………………………………...………26
3.3.1 鈷碳複合材料Co-N-GC之合成……………………………….…..26
3.3.2 Ketjen Black/硫(KB/S)陰極複合材料製備……………………...27
3.4 陰極極片及改質隔離膜製備……………………………………………...28
3.4.1 陰極極片製備……………………………………………………..28
3.4.2 改質隔離膜製備…………………………………………………..29
3.5 鈕扣電池組裝…………………………………………………………….30
3.6 材料分析儀器…………………………………………………………….31
3.6.1 X光粉末繞射儀……………………………………………..……31
3.6.2 場發式掃描電子顯微鏡…………………………………………..31
3.6.3 X射線光電子能譜儀……………………………………………..31
3.6.4比表面積及孔徑分析儀…………………………………………...32
3.6.5 熱重分析儀………………………………………………………..32
3.7 電化學檢測……………………………………………………………….32
3.7.1 恆電流充放電測試………………………………………………..32
3.7.2 循環伏安法………………………………………………………..33
3.7.3 交流阻抗分析……………………………………………………..33
第四章 結果與討論……………………………………………………………………..34
4.1 金屬有機框架衍生物Co-N-GC之材料性質分析………..….………….34
4.1.1 Co-N-GC之結晶繞射及表面顯微結構分析………….………….34
4.1.2 Co-N-GC之比表面積及孔徑分析…………………….………….39
4.1.3 Co-N-GC之元素鍵結分析…………………………….………….40
4.2 碳硫複合材料KB/S之材料性質分析……………………….…………..42
4.2.1 KB/S之結晶繞射及表面顯微結構分析………………………….42
4.2.2 碳硫複合材料KB/S硫含量分析…………………………………44
4.2.3 主體材料Ketjen Black之比表面積及孔徑分析…………………45
4.3 改質隔離膜之材料性質分析…………………………………………….47
4.4 改質隔離膜應用於鋰硫電池之電性表現……………………………….49
4.4.1 等速率充放電循環壽命表現……………………………………..49
4.4.2 變速率充放電循環壽命表現……………………………………..52
4.4.3 充放電曲線分析…………………………………………………..54
4.4.4 循環伏安法測試…………………………………………………..56
4.4.5 交流阻抗分析……………………………………………………..59
4.4.6 催化效應測試……………………………………………………..61
4.5 電化學測試前後之材料性質分析……………………………………….63
第五章 結論……………………………………………………………………………..64
第六章 未來展望………………………………………………………………………..65
第七章 參考文獻………………………………………………………………………..66
[1] National Oceanic and Atmospheric Administration (NOAA). Dataset accessed 2023-01-01 at https://climate.nasa.gov/.
[2] GISTEMP Team, 2022: GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies. Dataset accessed 2023-01-01 at https://data.giss.nasa.gov/gistemp/.
[3] Zhao, Meng, et al. "Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities." Angewandte Chemie International Edition 59.31 (2020): 12636-12652.
[4] Zhang, Sheng S. "Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries." Frontiers in Energy Research 1 (2013): 10.
[5] Ji, Xiulei, Kyu Tae Lee, and Linda F. Nazar. "A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries." Nature materials 8.6 (2009): 500-506.
[6] Schuster, Jörg, et al. "Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries." Angewandte Chemie 124.15 (2012): 3651-3655.
[7] Xin, Sen, et al. "Smaller sulfur molecules promise better lithium–sulfur batteries." Journal of the American Chemical Society 134.45 (2012): 18510-18513.
[8] Zhu, Qizhen, et al. "Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery." Nano Energy 33 (2017): 402-409.
[9] Zhou, Guangmin, et al. "Batteries: a graphene–pure‐sulfur sandwich structure for ultrafast, long‐life lithium–sulfur batteries (Adv. Mater. 4/2014)." Advanced Materials 26.4 (2014): 664-664.
[10] Guo, Juchen, Yunhua Xu, and Chunsheng Wang. "Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries." Nano letters 11.10 (2011): 4288-4294.
[11] Cheng, Xin-Bing, et al. "Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries." Nano Energy 4 (2014): 65-72.
[12] Barchasz, Céline, et al. "Novel positive electrode architecture for rechargeable lithium/sulfur batteries." Journal of Power Sources 211 (2012): 19-26.
[13] Jozwiuk, Anna, et al. "Fair performance comparison of different carbon blacks in lithium–sulfur batteries with practical mass loadings–Simple design competes with complex cathode architecture." Journal of Power Sources 296 (2015): 454-461.
[14] Zhou, Guangmin, et al. "Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries." ACS nano 7.6 (2013): 5367-5375.
[15] Ji, Liwen, et al. "Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells." Journal of the American Chemical Society 133.46 (2011): 18522-18525.
[16] Zhou, Guangmin, Yubao Zhao, and Arumugam Manthiram. "Dual‐confined flexible sulfur cathodes encapsulated in nitrogen‐doped double‐shelled hollow carbon spheres and wrapped with graphene for Li–S batteries." Advanced Energy Materials 5.9 (2015): 1402263.
[17] Pei, Fei, et al. "From hollow carbon spheres to N‐doped hollow porous carbon bowls: rational design of hollow carbon host for Li‐S batteries." Advanced Energy Materials 6.8 (2016): 1502539.
[18] Hart, Connor J., et al. "Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss." Chemical communications 51.12 (2015): 2308-2311.
[19] Wang, Xiaolei, et al. "Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium–sulfur batteries." Energy & Environmental Science 9.8 (2016): 2533-2538.
[20] Niu, Xiao-qing, et al. "Metal hydroxide–a new stabilizer for the construction of sulfur/carbon composites as high-performance cathode materials for lithium–sulfur batteries." Journal of Materials Chemistry A 3.33 (2015): 17106-17112.
[21] Zhang, Jintao, et al. "Double‐shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high‐efficiency polysulfide mediator for lithium–sulfur batteries." Angewandte Chemie 128.12 (2016): 4050-4054.
[22] Zheng, Jianming, et al. "Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries." Nano letters 14.5 (2014): 2345-2352.
[23] Mao, Yiyin, et al. "Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries." Nature communications 8.1 (2017): 1-8.
[24] Yu, Mingliang, et al. "Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries." Energy Storage Materials 20 (2019): 98-107.
[25] Pang, Quan, and Linda F. Nazar. "Long-life and high-areal-capacity Li–S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption." ACS nano 10.4 (2016): 4111-4118.
[26] Wang, Meng, et al. "Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries." Nano Research 11.6 (2018): 3480-3489.
[27] Pang, Quan, Dipan Kundu, and Linda F. Nazar. "A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries." Materials Horizons 3.2 (2016): 130-136.
[28] Tsai, Charlie, Frank Abild-Pedersen, and Jens K. Nørskov. "Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions." Nano letters 14.3 (2014): 1381-1387.
[29] Wang, Haotian, et al. "High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials." Nano letters 14.12 (2014): 7138-7144.
[30] Babu, Ganguli, et al. "Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis." Journal of the American Chemical Society 139.1 (2017): 171-178.
[31] Yuan, Zhe, et al. "Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts." Nano letters 16.1 (2016): 519-527.
[32] Zhou, Guangmin, et al. "Catalytic oxidation of Li2S on the surface of metal sulfides for Li− S batteries." Proceedings of the National Academy of Sciences 114.5 (2017): 840-845.
[33] Babu, Ganguli, et al. "Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration." Scientific reports 5.1 (2015): 1-7.
[34] Wang, Jian, et al. "Single-atom catalyst boosts electrochemical conversion reactions in batteries." Energy Storage Materials 18 (2019): 246-252.
[35] Du, Zhenzhen, et al. "Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries." Journal of the American Chemical Society 141.9 (2019): 3977-3985.
[36] Li, Yi-Juan, et al. "A novel synergistic composite with multi-functional effects for high-performance Li–S batteries." Energy & Environmental Science 9.6 (2016): 1998-2004.
[37] Liu, Zhenzhen, et al. "Atomic iron catalysis of polysulfide conversion in lithium–sulfur batteries." ACS applied materials & interfaces 10.23 (2018): 19311-19317.
[38] Wang, Cunguo, et al. "Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries." Journal of Materials Chemistry A 8.6 (2020): 3421-3430.
[39] Li, Yijuan, et al. "Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium–sulfur batteries." Energy Storage Materials 28 (2020): 196-204.
[40] Li, Yuanjian, et al. "Fast conversion and controlled deposition of lithium (poly) sulfides in lithium-sulfur batteries using high-loading cobalt single atoms." Energy Storage Materials 30 (2020): 250-259.
[41] Wang, Jianli, and Wei‐Qiang Han. "A review of heteroatom doped materials for advanced lithium–sulfur batteries." Advanced Functional Materials 32.2 (2022): 2107166.
[42] Lu, Chao, et al. "Single-atom catalytic materials for lean-electrolyte ultrastable lithium–sulfur batteries." Nano Letters 20.7 (2020): 5522-5530.
[43] Li, Yongfang, et al. "Fe, Co-bimetallic doped C3N4 with in-situ derived carbon tube as sulfur host for anchoring and catalyzing polysulfides in lithium-sulfur battery." Journal of Alloys and Compounds 873 (2021): 159883.
[44] Arora, Pankaj, and Zhengming Zhang. "Battery separators." Chemical reviews 104.10 (2004): 4419-4462.
[45] Chung, Sheng-Heng, and Arumugam Manthiram. "High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator." The journal of physical chemistry letters 5.11 (2014): 1978-1983.
[46] Peng, Hong‐Jie, et al. "Janus separator of polypropylene‐supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries." Advanced Science 3.1 (2016): 1500268.
[47] Peng, Lele, et al. "A fundamental look at electrocatalytic sulfur reduction reaction." Nature Catalysis 3.9 (2020): 762-770.
[48] Yu, Zhuo, et al. "Boosting polysulfide redox kinetics by graphene‐supported Ni nanoparticles with carbon coating." Advanced Energy Materials 10.25 (2020): 2000907.
[49] Bai, Songyan, et al. "Metal–organic framework-based separator for lithium–sulfur batteries." Nature Energy 1.7 (2016): 1-6.
[50] Li, Mengliu, et al. "Metal–organic framework-based separators for enhancing Li–S battery stability: mechanism of mitigating polysulfide diffusion." ACS Energy Letters 2.10 (2017): 2362-2367.
[51] Zhang, Chen, et al. "Anion‐sorbent composite separators for high‐rate lithium‐ion batteries." Advanced Materials 31.21 (2019): 1808338.
[52] Chung, Sheng‐Heng, and Arumugam Manthiram. "Bifunctional separator with a light‐weight carbon‐coating for dynamically and statically stable lithium‐sulfur batteries." Advanced Functional Materials 24.33 (2014): 5299-5306.
[53] Zhao, Di, et al. "Separator modified by Ketjen black for enhanced electrochemical performance of lithium–sulfur batteries." RSC advances 6.17 (2016): 13680-13685.
[54] Zeng, Pan, et al. "Long-life and high-areal-capacity lithium-sulfur batteries realized by a honeycomb-like N, P dual-doped carbon modified separator." Chemical Engineering Journal 349 (2018): 327-337.
[55] Qian, Xinye, et al. "Ketjen black-MnO composite coated separator for high performance rechargeable lithium-sulfur battery." Electrochimica Acta 192 (2016): 346-356.
[56] Song, Xiong, et al. "Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries." Chemical Engineering Journal 333 (2018): 564-571.
[57] Wu, Feng, et al. "Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries." Energy Storage Materials 14 (2018): 383-391.
[58] Zhang, Shuaihua, et al. "Zeolitic imidazole framework templated synthesis of nanoporous carbon as a novel fiber coating for solid-phase microextraction." Analyst 141.3 (2016): 1127-1135.
[59] Hsu, Shao-Hui, et al. "Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs)." Scientific reports 4.1 (2014): 1-6.
[60] Bardestani, Raoof, Gregory S. Patience, and Serge Kaliaguine. "Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT." The Canadian Journal of Chemical Engineering 97.11 (2019): 2781-2791.
[61] Chen, Jia-Jia, et al. "Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li–S battery." Chemistry of Materials 27.6 (2015): 2048-2055.
[62] Wang, Xiaojuan, et al. "MOF derived catalysts for electrochemical oxygen reduction." Journal of Materials Chemistry A 2.34 (2014): 14064-14070.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *