帳號:guest(18.224.44.168)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):柯秉繻
作者(外文):Ko, Ping-Hsu
論文名稱(中文):微量硼元素添加對耐火高熵合金機械性質影響之研究
論文名稱(外文):Influence of Minor Boron Doping on Mechanical Properties of Refractory High-Entropy Alloys
指導教授(中文):張守一
指導教授(外文):Chang, Shou-Yi
口試委員(中文):蔡銘洪
蔡哲瑋
口試委員(外文):Tsai, Ming-Hung
Tsai, Che-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:109031595
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:107
中文關鍵詞:耐火高熵合金硼元素機械性質
外文關鍵詞:Refractory High-Entropy alloysBoronmechanical property
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今高溫合金主要由超合金所構成,但目前超合金工作溫度已達其使用極限。過去十年內,由清華大學提出的高熵合金逐漸受到各界學者重視,由於組成元素種類眾多,原子間尺寸差異導致局部化學能擾動及嚴重晶格扭曲效應,造就了許多異於傳統合金的材料特性。其中,BCC結構的耐火高熵合金在高溫下具有優異的機械性質,能夠維持相穩定性,同時具備極佳的抗軟化能力,但目前已開發的BCC耐火高熵合金仍面臨室溫延展性及高溫強度的取捨。因此本實驗利用改進之新成分HfMoNbTaTiZr及HfMo0.5NbTaTiZrV0.5進行基本性質分析與機械性質的量測。基本性質分析包含XRD晶體結構鑑定、EBSD結晶取向鑑定、EDS成分分析,機械性質部分則包含奈米壓痕測試、臨場SEM微米柱壓縮、巨觀壓縮測試等。並且再透過微量添加硼元素來改善機械性質。綜合上述分析,本實驗發現利用調控成分組成及添加微量溶質原子,能改善BCC耐火高熵合金於室溫下強度及延性表現,在不過度犧牲延展性的前提下成功提升材料強度,為未來工程合金應用開闢新的道路。
 Nowadays, superalloys are mainly composed of superalloys, but the current working temperature of superalloys has reached its limit. In the past ten years, the high-entropy alloys have gradually attracted the attention of scholars. Due to multiple constituent elements, the size differences between atoms lead to local chemical energy disturbances and severe lattice distortion effects, creating many materials that are different from traditional alloys characteristics. Among them, refractory high-entropy alloys with BCC structures have excellent mechanical properties at high temperatures. It can maintain phase stability and have excellent softening resistance, but the currently developed BCC refractory high-entropy alloys still face the strength–ductility trade-off at room temperature and high temperature. Therefore, this study focuses on the basic properties and mechanical behavior of improved new components, HfMoNbTaTiZr and HfMo0.5NbTaTiZrV0.5. In this study, the basic properties were carried out using X-ray diffraction, electron back-scattered, and energy-dispersive X-ray spectroscopy. In addition, nanoindentation, in-situ SEM micropillar compression test, and macroscopic compression test were used to analyze the mechanical properties. And then adding a small amount of boron to improve the mechanical properties. Based on the above analysis, this experiment found that the strength and ductility performance of BCC refractory high-entropy alloys at room temperatures can be improved by adjusting the composition and adding trace solute atoms, and the strength of the material can be improved without excessive sacrificing ductility.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XIV
壹、前言 1
貳、文獻回顧 2
2-1 高熵合金 2
2-1-1 高熵合金發展 2
2-1-2 四大核心效應 5
2-1-3 不同溫度下高熵合金之特殊性質表現 7
2-2 高熵合金之機械行為 11
2-2-1 部分差排與疊差 11
2-2-2 變形雙晶 13
2-2-3 相變誘發塑性 15
2-2-4 交叉滑移 17
2-2-5 BCC高熵合金強度來源 19
2-3 異質結構高熵合金 27
2-3-1 異質高熵合金 27
2-3-2 異質材料的變形行為 29
2-3-3 多相異質結構 31
2-3-4 單相異質結構 35
2-4 間隙型異質結構高熵合金 36
2-4-1 間隙型異質高熵合金 36
2-4-2 硼原子對晶界之影響 38
2-4-3 硼對晶粒之影響 41
2-5 研究目的 43
參、實驗步驟 44
3-1 實驗規劃 44
3-2 實驗流程 45
3-2-1 高熵合金試片製備 45
3-2-2 高熵合金試片基本性質 47
3-2-3 XRD 晶體結構分析 49
3-2-4 EDS 組成成分分析 49
3-2-5 EBSD 晶粒方向鑑定 49
3-2-6 巨觀壓縮測試 49
3-2-7 XPM機械性質量測 51
3-2-8 聚焦離子束 (FIB) 微米柱試片製備 53
3-2-9 臨場SEM微米柱壓縮測試 55
肆、結果與討論 57
4-1 XRD晶體結構鑑定 57
4-2 SEM微結構及EDS組成成分分析 59
4-3 晶粒方向及相鑑定 64
4-4 維氏硬度分析 68
4-5 奈米壓痕測試分析 70
4-6 室溫臨場微米柱壓縮測試 80
4-7 室溫巨觀壓縮測試 87
4-8 室溫巨觀壓縮測試斷裂面 93
伍、結論 96
陸、參考文獻 99


[1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials 6 (2004) 299-303.
[2] E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys, Nature Reviews Materials 4(8) (2019) 515-534.
[3] X.H. Yan, Y.Zhang, Functional properties and promising applications of high entropy alloys, Scripta Materialia 187 (2020) 188-193
[4] X.Z. Lim, Metal Mixology, Nature 533 (2016) 306-307.
[5] Li, Weidong, et al. "Mechanical behavior of high-entropy alloys." Progress in Materials Science (2021): 100777.
[6] C.Y. Cheng, Y.C. Yang, Y. Z. Zhong, Y.Y. Chen, T. Hsu, J.W. Yeh, Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys, Current Opinion in Solid State and Materials Science 21 (2017) 299-311.
[7] I. Basu, J.T.M.D. Hosson, Strengthening mechanisms in high entropy alloys: Fundamental issues, Scripta Materialia 187 (2020) 148-156.
[8] X. Yang Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Advanced Engineering Materials 10 (2008) 534-538.
[9] F.f. Liu, P. K. Liaw, Y. Zhang, Recent Progress with BCC-Structured High-Entropy Alloys, Metals 12 (2022) 501.
[10] S. Praveen, H. S. Kim, High-Entropy Alloys: Potential Candidates for High-Temperature Applications – An Overview, Advanced Engineering Materials 1700645 (2018) 1-22.
[11] Z. Li, S. Zhao, R. O. Ritchie, M. A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Progress in Materials Science 102 (2019) 296-345.
[12] B. Gludovatz, Anton Hohenwarter, D. Catoor, E.H. chang, E. P. George, R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153-1158.
[13] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19 (2011) 698-706.


[14] O.N. Senkov, D. B. Miracle, K. J. Chaput, Development and exploration of refractory high entropy alloys—A review, Journal of Materials Research (2018) 1-37.
[15] M. Naeem, H. Y. He, F. Zhang, H. L. Huang, S. Harjo, T. Kawasaki, B. Wang, S. Lan, Z. D. Wu, F. Wang, Y. Wu, Z. P. Lu, Z. W. Zhang, C. T. Liu, and X. L. Wang, Cooperative deformation in high-entropy alloys at ultralow temperatures, Science Advances 6 (2020) 1-8.
[16] S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, H.S. Kim, Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy, Materials Science and Engineering: A 689 (2017) 122-133.
[17] W. Xiaolei, Y. Muxin, J. Ping, W. Chang, L. Zhou, Y. Fuping, M. Evan, Deformation nanotwins suppress shear banding during impact test of CrCoNi medium-entropy alloy, Scripta Materialia 178 (2020) 452-456.
[18] Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat Commun 6 (2015) 10143.
[19] T. Yang, Y.L. Zhao, J.H. Luan, B. Han, J. Wei, J.J. Kai, C.T. Liu, Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy, Scripta Materialia 164 (2019) 30-35.
[20] G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Materialia 118 (2016) 152-163.
[21] S. Wang, M.X. Wu, D. Shu, G. Zhu, D. Wang, B. Sun, Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures, Acta Materialia 201 (2020) 517-527
[22] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature 534(7606) (2016) 227-30.
[23] Hailong Huang, Yuan Wu, Junyang He, Hui Wang, Xiongjun Liu, Ke An, Wei Wu, Zhaoping Lu, Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering, Advanced Materials. 29. (2017) 1701678.



[24] Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R. O. Ritchie, Q. Yu, Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature 574 (2019) 223-227.
[25] Y. Bu, Y. Wu, Z.F. Lei, X.Y. Yuan, H.h. Wu, X. B. Feng, J.B. Liu, J. Ding, Y. Lu, H.T. Wang, Z.P. Lu, W. Yang, Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys, Materials Today 46 (2021) 28-34.
[26] X.R. Zhou, S. He, J. Marian, Cross-kinks control screw dislocation strength in equiatomic bcc refractory alloys, Acta Materialia 211 (2021) 116875.
[27] F. Maresca, W.A.Curtin, Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K, Acta Materialia 182 (2020) 235-249.
[28] B. Chen, S. Li, H.X. Zong, X.D. Ding, J. Sun, E. Ma, Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys, Pnas 117 (2020) 16199-16206.
[29] F. Maresca, W. A. Curtin, Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys, Acta Materialia 182 (2020) 144-162.
[30] S. Xu, Y.Q. Su, W.R. Jian, I. J. Beyerlein, Local slip resistances in equal-molar MoNbTi multi-principal element alloy, Acta Materialia 202 (2021) 68-79.
[31] F. Wang, G.H. Balbus, S. Xu, Y. Su, J. Shin, P. F. Rottmann, K.E. Knipling, J.C. Stinville, L.H. Mills, O.N. Senkov, I.J. Beyerlein, T. M. Pollock, D.S. Gianola, Multiplicity of dislocation pathways in a refractory multiprincipal element alloy, Science 370 (2020) 95-101.
[32] Q. Zhang, R. Huang, X. Zhang, T. Cao, Y.F. Xue, and X.Y. Li, Deformation Mechanisms and Remarkable Strain Hardening in Single-Crystalline High-Entropy-Alloy Micropillars/Nanopillars, Nano letters 21 (2021) 3671-3679.
[33] J.P. Couzinié, L. Lilensten, Y. Champion, G. Dirras, L. Perrière, I. Guillot, Materials Science and Engineering: A 645 (2015)255-263.
[34] S.I. Rao, C. Varvenne, C. Woodward, T.A. Parthasarathy, D. Miracle, O.N. Senkov, W.A. Curtin, Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy, Acta Materialia 125 (2017) 311-320.

[35] O.N. Senkov, S. Gorsse, D.B. Miracle, High temperature strength of refractory complex concentrated alloys, Acta Materialia 175 (2019) 394-405.
[36] T. Yang, Z. Shijun, B. Hongbin, E. Takeshi, Z. Yanwen, Z. Fuxiang, Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys, Acta Materialia 183 (2020) 172-181.
[37] X.G. Li, C. Chen, H. Zheng, Y.X. Zuo, S.P. Ong, Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy, npj computational materials 6 (2020).
[38] O.N. Senkov, S. Rao, K.J. Chaput, C.Woodward, Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys, Acta Materialia 151 (2018) 201-215.
[39] C. Lee, F. Maresca, R. Feng, Y. Chou, T. Ungar, M. Widom, K. An, J.D. Poplawsky, Y.C. Chou, P.K. Liaw, W.A. Curtin, Strength can be controlled by edge dislocations in refractory high-entropy alloys, Nature Communications, 12 (2021) 1-8.
[40] R. Feng, B. Feng, M.C. Gao, C. Zhang, J.C. Neuefeind, J.D. Poplawsky, Y. Ren, K. An, M. Widom, P.K. Liaw, Superior High-Temperature Strength in a Supersaturated Refractory High-Entropy Alloy, Advanced materials 33 (2021) 2102401.
[41] C. Lee, G. Kim, Y. Chou, B.L. Musicó, M.C. Gao, K. An, G. Song, Y.C. Chou, V. Keppens, W. Chen, P.K. Liaw, Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Science advances 6 (2020).
[42] A. Ghafarollahi, W.A.Curtin, Screw-controlled strength of BCC non-dilute and high-entropy alloys, Acta Materialia 226 (2020) 117617.
[43] I.A. Su, K.K. Tseng, J.W. Yeh, B.E. Sayed, C.H. Liue, S.H. Wang, Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35, Scripta Materialia 206 (2022) 114225.
[44] K.K Tseng, C.C. Juan, S. Tso, H.C. Chen, C.W. Tsai, J.W. Yeh, Effects of Mo, Nb, Ta, Ti, and Zr on Mechanical Properties of Equiatomic Hf-Mo-Nb-Ta-Ti-Zr Alloys, entropy 21 (2019).
[45] X. Wu, Y. Zhu, Heterogeneous materials: a new class of materials with unprecedented mechanical properties, Materials Research Letters 5 (2017) 527-532.


[46] E. Ma, X.Wu, Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy, Nature Communications 10 (2019) 5623.
[47] P. Sathiyamoorthi, H.S. Kim, High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties, Progress in Materials Science 123 (2022) 100709.
[48] X. Wu, Y. Zhu, Perspective on hetero-deformation induced (HDI) hardening and back stress, Materials Research Letters 7 (2019) 393-398.
[49] D. Choudhuri, B. Gwalani, S. Gorsse, M. Komarasamy, S.A. Mantri, S.G. Srinivasan, R.S. Mishra, R. Banerjee, Enhancing strength and strain hardenability via deformation twinning in fcc-based high entropy alloys reinforced with intermetallic compounds, Acta Materialia 165 (2019) 420-430.
[50] L.J. Wang, L. Wang, S.C. Zhou, Q. Xiao, Y. Xiao, X.T. Wang, T.Q. Cao, Y. Ren, Y.J. Liang, L. Wang, Y.F. Xue, Precipitation and micromechanical behavior of the coherent ordered nanoprecipitation strengthened Al-Cr-Fe-Ni-V high entropy alloy, Acta Materialia 216 (2021) 117121.
[51] P. Sathiyamoorthi, P.J. Min, Moon, Jongun, Bae, J. Wung, P.A. Rad, A. Zargaran, S. Kim, Hyoung, Achieving high strength and high ductility in Al0.3CoCrNi medium-entropy alloy through multi-phase hierarchical microstructure, Materialia 8 (2019) 100442.
[52] P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, P. Hu, Y. Gao, Y. Zhong, P.K. Liaw, Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nature Communications 10 (2019).
[53] P. Shi, R. Li, Y. Li, Y. Wen, Y. Zhong, W. Ren, Z. Shen, T. Zheng, J. Peng, X. Liang, P. Hu, N. Min, Y. Zhang, Y. Ren, P.K. Liaw, D. Raabe, Y.D. Wang, Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science 373 (2021) 912-918.
[54] S. Muskeri, V. Hasannaeimi, R. Salloom, M. Sadeghilaridjani, S. Mukherjee, Small-scale mechanical behavior of a eutectic high entropy alloy, Scientific Reports 10 (2020) 2669.
[55] V. Soni, O.N. Senkov, B. Gwalani, D.B. Miracle, R. Banerjee, Microstructural Design for Improving Ductility of An Initially Brittle Refractory High Entropy Alloy, Scientific reports 8 (2018) 8816.

[56] R.K. Nutor, Q.P. Cao, R. Wei, Q.M. Su, G.H. Du, X. Wang, F. Li, D.X. Zhang, J.Z. Jiang, A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range, Science advances 7 (2021).
[57] T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science 362 (2018) 933-937.
[58] Z. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H. Wen, W. Xiong, D. Zhang, Y. Zhou, T.J. Rupert, W.P. Chen1, E.J. Lavernia, A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength, Science advances 4 (2018) 10.
[59] B. Cao, T. Yang, W.H. Liu, C.T. Liu, Precipitation-hardened high-entropy alloys for high-temperature applications: A critical review, MRS Bulletin 44 (2019) 854-859.
[60] W.P. Li, T.H. Chou, T. Yang, W.S. Chuang, J. C. Huang, J.H. Luan, X.K. Zhang, X.F. Huo, H. Kong, Q.F. He, X.H. Du, C.T. Liu, F.R. Chen, Design of ultrastrong but ductile medium-entropy alloy with controlled precipitations and heterogeneous grain structures, Applied Materials Today 23 (2021) 101037.
[61] Q. Wang, J. Han, Y.F. Liu, Z.W. Zhang, C. Dong, P.K. Liaw, Coherent precipitation and stability of cuboidal nanoparticles in body-centered-cubic Al0.4Nb0.5Ta0.5TiZr0.8 refractory high entropy alloy, Scripta Materialia 190 (2021) 40-45.
[62] Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, T.G. Nieh, Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions, Acta Materialia 147 (2018) 213-225.
[63] B.X. Cao, D.X. Wei, X.F. Zhang, H.J. Kong, Y.L. Zhao, J.X. Hou, J.H. Luan, Z.B. Jiao, Y. Liu, T. Yang, C.T. Liu, Intermediate temperature embrittlement in a precipitation-hardened high-entropy alloy: The role of heterogeneous strain distribution and environmentally assisted intergranular damage, Materials Today Physics 24 (2022) 100653.
[64] T. Yang, Y.L. Zhao, L. Fan, J. Wei, J.H. Luan, W.H. Liu, C. Wang, Z.B. Jiao, J.J. Kai, C.T. Liu, Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys, Acta Materialia 189 (2020) 47-59.

[65] S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure, Acta Materialia 165 (2019) 444-458.
[66] P. Sathiyamoorthi, J. Moon, J.W. Bae, P.A. Rad, H.S. Kim, Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing, Scripta Materialia 163 (2019) 152-156.
[67] Q.S. Pan, L. Zhang, R. Feng, Q. Lu, K. An, A.C. Chuang, J.D. Poplawsky, P.K. Liaw, L. Lu, Gradient cell–structured high-entropy alloy withexceptional strength and ductility, Science 374 (2021) 984-989.
[68] B.X. Cao, H.J. Kong, L. Fan. J.H. Luan, Z.B. Jiao, J.J. Kai, T. Yang, C.T. Liu, Heterogenous columnar-grained high-entropy alloys produce exceptional resistance to intermediate-temperature intergranular embrittlement, Scripta Materialia 194 (2021) 113622.
[69] L. Guo, W. Wu, S. Ni, Z. Yuan, Y. Cao, Z.W. Wang, M. Song, Strengthening the FeCoCrNiMo0.15 high entropy alloy by a gradient structure, Journal of Alloys and Compounds 841 (2020) 155688.
[70] W. Guo, S. Jing, L.Wenjun, C. H. Liebscher, C. Kirchlechner, Y. Ikeda, F. Körmann, L. Xuan, X. Yunfei, G. Dehm, Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy, Acta Materialia 185 (2020) 45-54.
[71] E. Ma, T. Zhu, Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals, Materials Today 20 (2017) 323-331.
[72] Z. Li, Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior, Acta Materialia 164 (2019) 400-412.
[73] Y. Han, H.B. Li, H. Feng, Y. Tian, Z.H. Jiang, T. He, Mechanism of dislocation evolution during plastic deformation of nitrogen-doped CoCrFeMnNi high-entropy alloy, Materials Science and Engineering: A 814 (2021) 141235.
[74] Z.F. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z.P. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 14 (2018) 546-550.
[75] J.B. Seol, J. W. Bae, Z. Li, J.C. Han, J.G. Kim, D. Raabe, H.S. Kim, Boron doped ultrastrong and ductile high-entropy alloys, Acta Materialia 151 (2018) 366-376.
[76] C.T. Liu, C.L. White, J.A. Horton, Effect of boron on grain-boundaries in Ni3Al, Acta Metallurgica 33 (1985) 213-229.
[77] G.D. Rosa, P. Maugis, A.Portavoce, J. Drillet, N. Valle, E. Lentzen, K. Hoummada, Grain-boundary segregation of boron in high-strength steel studied by nano-SIMS and atom probe tomography, Acta Materialia 182 (2020) 226-234.
[78] M. A. Gibson, C.A. Schuh, Segregation-induced changes in grain boundary cohesion and embrittlement in binary alloys, Acta Materialia 95 (2015) 145-155.
[79] P. Kontis, H.A.Mohd Yusof, S. Pedrazzini, M. Danaie, K.L. Moore, P.A.J. Bagot, M.P. Moody, C.R.M. Grovenor, R.C. Reed, On the effect of boron on grain boundary character in a new polycrystalline superalloy, Acta Materialia 103 (2016) 688-699.
[80] T. Yang, Y. L. Zhao, W.P. Li, C.Y. Yu, J.H. Luan, D.Y. Lin, L. Fan, Z. B. Jiao, W.H. Liu, X.J. Liu, J.J. Kai, J.C. Huang, C.T. Liu, Ultrahigh-strength and ductile superlattice alloyswith nanoscale disordered interfaces, Science 369 (2020) 427-432.
[81] J.B. Seol, J.W. Bae, J.G. Kim, H. Sung, Z. Li, H.H. Lee, S. H. Shim, J.H. Jang, W.S. Ko, S.I. Hong, H.S. Kim, Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications, Acta Materialia 194 (2020) 366-377.
[82] J. Pang, H.W. Zhang, L. Zhang, Z.W. Zhu, H. Fu, H. Li, A. Wang, Z.K. Li, H.F. Zhang, Simultaneous enhancement of strength and ductility of body-centered cubic TiZrNb multi-principal element alloys via boron-doping, Journal of Materials Science & Technology 78 (2021) 74-80.
[83] X. Gao, L. Wang, N. Guo, L. Luo, G.M. Zhu, C.C. Shi, Y. Su, J. Guo, In-situ development of MB2 and their effect on microstructure and mechanical properties of refractory Hf0.5Mo0.5NbTiZr high entropy alloy matrix composites, International Journal of Refractory Metals and Hard Materials 96 (2021) 105473.
[84] C. Liu, W.J. Lu, W. Xia, C.W. Du, Z. Rao, J.P. Best, S. Brinckmann, J. Lu, B. Gault, G. Dehm, G. Wu, Z. Li, D. Raabe, Massive interstitial solid solution alloys achieve near-theoretical strength, Nature Communications 13 (2022) 1102.
[85] S.W. Xin, X. Shen, C.C.Du, J. Zhao, B.R. Sun, H.X. Xue, T.T. Yang, X.C. Cai, T.D. Shen, Bulk nanocrystalline boron-doped VNbMoTaW high entropy alloys with ultrahigh strength, hardness, and resistivity, Journal of Alloys and Compounds 853 (2021) 155995.
[86] M. Song, R. Zhou, J. Gu, Z.W. Wang, S. Ni, Y. Liu, Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy, Applied Materials Today 18 (2020) 100498.
[87] M.Y. He, Y.F. Shen, N. Jia, P.K. Liaw, C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy, Applied Materials Today 25 (2021) 101162.
[88] B. Kang, T. Kong, N.H. Dan, D.D. Phuong, H.J. Ryu, S.H. Hong, Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy, International Journal of Refractory Metals and Hard Materials 100 (2021) 105636.
[89] X. Gao, L. Wang, N. Guo, L. Luo, G.M. Zhu, C.C. Shi, Y. Su, J. Guo, In-situ development of MB2 and their effect on microstructure and mechanical properties of refractory Hf0.5Mo0.5NbTiZr high entropy alloy matrix composites, International Journal of Refractory Metals and Hard Materials 96 (2021) 105473.
[90] Z.W. Wang, I. Baker, Z.H. Cai, S. Chen, J.D. Poplawsky, W. Guo, The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys, Acta Materialia 120 (2016) 228-239.
[91] K.S. Chung, J.H. Luan, C.H. Shek, Strengthening and deformation mechanism of interstitially N and C doped FeCrCoNi high entropy alloy, Journal of Alloys and Compounds 904 (2022) 164118.
[92] R.R. Eleti, A.H. Chokshi, A. Shibata, N. Tsuji, Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy, Acta Materialia 183 (2020) 64-77.
[93] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloy. Comp. 509 (2011) 6043.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *