帳號:guest(3.17.76.126)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳政宇
作者(外文):Chen, Zheng-Yu
論文名稱(中文):溶液電漿純化(回收)銅/銅合金技術之研究
論文名稱(外文):Research on Solution Plasma – A New Recycle(Purification) Technology of Copper/Copper Alloy
指導教授(中文):賴志煌
指導教授(外文):Lai, Chih-Huang
口試委員(中文):李文錦
張存續
口試委員(外文):Li, Wen-Jin
Zhang, Cun-Xu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:109031592
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:56
中文關鍵詞:回收純化溶液電漿黃銅
外文關鍵詞:recyclepurificationsolution plasmacopperbrass
相關次數:
  • 推薦推薦:0
  • 點閱點閱:238
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,包括電子工業在內的各項產業快速的發展,對材料的需求量及品質日漸提升,但在經歷長年大量的開採後自然資源已逐漸枯竭,導致原料的輸出逐漸下降且開採成本也隨之增加。在此背景下,純化(回收)技術的發展逐漸受到更大的關注,有鑑於傳統純化(回收)製程皆有各自的缺陷,難以符合現今市場的多元需求,通常需將多種技術整合使用才有較好的效益,但也使處理過程變得更複雜。在本研究中希望開發一種新穎的溶液電漿技術,達到低成本、高效率的一步製程,解決現有方法中高能耗或高化學消耗的困難並取而代之。
在此選擇以銅/銅合金作為研究材料,不僅市占率高需求量也逐漸增加,適合做為將新技術引進市場的切入點,且已在各領域被廣泛運用和研究,在豐富的背景知識下,更有利於排除新技術開發時遇到的困難。本研究分別以高純度銅和低純度黃銅為原料,分別模擬多雜質的初期回收和高純度的精煉情況,判斷此系統適合的純化區間。
在多元素的複雜系統下,利用水化學熱力學平衡模擬軟體輔助,預測不同參數條件下可能產生的化合物及穩定態,再進行實驗上的驗證和優化得出最佳的純化效果,主要藉由控制電解質種類、pH值和溫度等方式將其餘雜質元素去除,最終產物純度可達到99.99%以上。
Nowadays, the demand for high-quality materials keeps increasing. However, the natural resources have gradually been exhausted, resulting in a gradual decline in the output of raw materials and mining costs increase. In this context, the development of purification technology has gradually attracted greater attention. Traditional purification (recycling) processes have their shortcomings, it is difficult to meet the diverse needs of the current market. It is hoped to develop a novel solution plasma technology to achieve a low-cost, high-efficiency one-step process to solves and replaces the difficulties of high energy or high chemical consumption in existing methods.
Here, copper/copper alloy is chosen as the research material, which has a high market share and gradually increases in demand. It is suitable as an entry point for introducing new technologies into the market and has been widely used and researched in various fields. Under the knowledge, it is more conducive to eliminating the difficulties encountered in the development of new technologies. In this study, high-purity copper and low-purity brass were used as raw materials, respectively, to simulate the initial recovery of multiple impurities and the refining of high-purity, and to determine the suitable purification interval for this system.
Under the complex multi-element system, the water chemistry thermodynamic equilibrium is used to simulate the software to help predict the compounds and stable states that may be produced under different parameter conditions, and then carry out experimental verification and optimization to obtain the best purification effect. The remaining impurity elements are removed using electrolyte type, pH value, and temperature, and the purity of the final product can reach above 99.99%.
第1章 緒論 1
1.1 研究起源 1
1.2 傳統純化技術比較 2
1.3 研究動機 4
第2章 文獻回顧 5
2.1 溶液電漿原理及應用 5
2.1.1 溶液電漿原理 5
2.1.2 溶液電漿系統 7
2.1.3 電極表面反應機制 8
2.2 溶液電漿系統中的變項 12
2.2.1 pH值效應 12
2.2.2 陰離子效應 14
2.2.3 陽離子效應 16
2.2.4 電解質濃度效應 17
2.3 熱力學模擬 19
2.4 銅/銅合金純化(回收)需求及市場 20
2.5 傳統銅/銅合金純化(回收)製程比較 22
第3章 實驗與分析方法 25
3.1 實驗內容與流程(Experimental Details) 25
3.1.1 實驗架構(Structure) 25
3.1.2 參數設定(Parameters) 27
3.2 純銅/氧化銅粉末特性分析(Characterization) 28
3.2.1 表面形貌:掃描式電子顯微鏡(Scan Electron Microscopy, SEM) 28
3.2.2 成分分析:X射線能量散步分析儀(Energy-dispersive X-ray spectroscopy, EDS) 28
3.2.3 純度分析:感應耦合電漿質譜分析儀(Inductively Coupled Plasma-Mass Spectrometry, ICP-MS) 29
第4章 結果與討論 30
4.1 溶液電漿反應與陰極溶出機制(Solution plasma reaction and cathode dissolution mechanism) 30
4.1.1 陰極析出反應 (Cathode dissolution reaction) 30
4.1.2 工作電壓效應(Applied voltage effect) 34
4.2 純銅/氧化銅之製備與參數影響(Influence of Process Parameters) 36
4.2.1 電解質選擇(Electrolyte species) 36
4.2.2 溶液酸鹼度(pH value effect) 39
4.2.3 溶液溫度效應(Temperature effect) 45
4.3 技術比較 49
第5章 結論與未來展望 51
5.1 結論 51
5.2 未來展望 51
第6章 參考文獻 53

1. Hunt, A.J., et al., The importance of elemental sustainability and critical element recovery. Green Chemistry, 2015. 17(4): p. 1949-1950.
2. Ma, B., et al., Recycle more, waste more? When recycling efforts increase resource consumption. Journal of Cleaner Production, 2019. 206: p. 870-877.
3. High Purity Base Metals Market Size, Share & Trends Analysis Report By Product (Copper, Aluminum, Lead, Zinc), By End Use (Transportation, Building & Construction), By Region, And Segment Forecasts, 2020 - 2027.
4. Habashi, F., A short history of hydrometallurgy. Hydrometallurgy, 2005. 79(1-2): p. 15-22.
5. Makuza, B., et al., Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources, 2021. 491: p. 229622.
6. Ding, L., et al., Continuous electrolytic refining process of cathode copper with non-dissolving anode. Minerals Engineering, 2019. 135: p. 21-28.
7. Clements, J.S., M. Sato, and R.H. Davis, Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water. IEEE Transactions on Industry Applications, 1987(2): p. 224-235.
8. Saito, G., S. Hosokai, and T. Akiyama, Synthesis of ZnO nanoflowers by solution plasma. Materials Chemistry and Physics, 2011. 130(1-2): p. 79-83.
9. Toriyabe, Y., et al., Controlled formation of metallic nanoballs during plasma electrolysis. Applied physics letters, 2007. 91(4): p. 041501.
10. Hickling, A. and M. Ingram, Contact glow-discharge electrolysis. Transactions of the Faraday Society, 1964. 60: p. 783-793.
11. Tsuji, T., et al., Laser-induced silver nanocrystal formation in polyvinylpyrrolidone solutions. Journal of Photochemistry and Photobiology A: Chemistry, 2009. 206(2-3): p. 134-139.
12. Saito, G., et al., Synthesis of copper/copper oxide nanoparticles by solution plasma. Journal of Applied Physics, 2011. 110(2): p. 023302.
13. Pootawang, P., et al., Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing. Nanotechnology, 2012. 23(39): p. 395602.
14. Saito, G., Y. Nakasugi, and T. Akiyama, Excitation temperature of a solution plasma during nanoparticle synthesis. Journal of Applied Physics, 2014. 116(8): p. 083301.
15. Saito, G., et al., Solution plasma synthesis of ZnO flowers and their photoluminescence properties. Applied surface science, 2014. 290: p. 419-424.
16. Panomsuwan, G., N. Saito, and T. Ishizaki, Electrocatalytic oxygen reduction on nitrogen-doped carbon nanoparticles derived from cyano-aromatic molecules via a solution plasma approach. Carbon, 2016. 98: p. 411-420.
17. Nayl, A., et al., Acid leaching of mixed spent Li-ion batteries. Arabian Journal of Chemistry, 2017. 10: p. S3632-S3639.
18. Quijada-Maldonado, E., et al., Possibilities and challenges for ionic liquids in hydrometallurgy. Separation and Purification Technology, 2020. 251: p. 117289.
19. Wen, T., et al., Effect of anions species on copper removal from wastewater by using mechanically activated calcium carbonate. Chemosphere, 2019. 230: p. 127-135.
20. Thorson, M.R., K.I. Siil, and P.J. Kenis, Effect of cations on the electrochemical conversion of CO2 to CO. Journal of the Electrochemical Society, 2012. 160(1): p. F69.
21. Singh, M.R., et al., Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. Journal of the American Chemical Society, 2016. 138(39): p. 13006-13012.
22. Saito, G., et al., Surface morphology of a glow discharge electrode in a solution. Journal of Applied Physics, 2012. 112(1): p. 013306.
23. Cloutier-Hurteau, B., S. Sauvé, and F. Courchesne, Comparing WHAM 6 and MINEQL+ 4.5 for the chemical speciation of Cu2+ in the rhizosphere of forest soils. Environmental science & technology, 2007. 41(23): p. 8104-8110.
24. Kocaoba, S., G. Cetin, and G. Akcin, Chromium removal from tannery wastewaters with a strong cation exchange resin and species analysis of chromium by MINEQL+. Scientific Reports, 2022. 12(1): p. 1-10.
25. Schecher, W.D. and D.C. McAvoy, MINEQL+: a software environment for chemical equilibrium modeling. Computers, Environment and Urban Systems, 1992. 16(1): p. 65-76.
26. Dubey, S.P., et al., Single-step green synthesis of imine-functionalized carbon spheres and their application in uranium removal from aqueous solution. RSC Advances, 2014. 4(86): p. 46114-46121.
27. Beylot, A. and J. Villeneuve, Accounting for the environmental impacts of sulfidic tailings storage in the Life Cycle Assessment of copper production: A case study. Journal of Cleaner Production, 2017. 153: p. 139-145.
28. Association., C.D., 2013Technical Report - the U.S. Copper-Base Scrap Industry and Its By-Products. 2013.
29. Schipper, B.W., et al., Estimating global copper demand until 2100 with regression and stock dynamics. Resources, Conservation and Recycling, 2018. 132: p. 28-36.
30. Elshkaki, A., et al., Copper demand, supply, and associated energy use to 2050. Global environmental change, 2016. 39: p. 305-315.
31. International Copper Study Group (ICSG), The World Copper Factbook 2021.
32. Chen, J., et al., Environmental benefits of secondary copper from primary copper based on life cycle assessment in China. Resources, Conservation and Recycling, 2019. 146: p. 35-44.
33. Loibl, A. and L.A.T. Espinoza, Current challenges in copper recycling: aligning insights from material flow analysis with technological research developments and industry issues in Europe and North America. Resources, Conservation and Recycling, 2021. 169: p. 105462.
34. Wang, T., et al., Copper recycling flow model for the United States economy: Impact of scrap quality on potential energy benefit. Environmental science & technology, 2021. 55(8): p. 5485-5495.
35. Worrell, E. and M.A. Reuter, Handbook of Recycling: State-of-the-art for Practitioners, Analysts, and Scientists. 2014: Newnes.
36. Oishi, T., M. Yaguchi, and Y. Takai, Hydrometallurgical recovery of high-purity copper cathode from highly impure crude copper. Resources, Conservation and Recycling, 2021. 167: p. 105382.
37. Samuelsson, C. and B. Björkman, Copper recycling, in Handbook of recycling. 2014, Elsevier. p. 85-94.
38. Friedman, A., et al., Copper artifacts: correlation with source types of copper ores. Science, 1966. 152(3728): p. 1504-1506.
39. Arroyo-Torralvo, F., et al., Optimizing operating conditions in an ion-exchange column treatment applied to the removal of Sb and Bi impurities from an electrolyte of a copper electro-refining plant. Hydrometallurgy, 2017. 171: p. 285-297.
40. Hu, H., et al., Efficient removal of copper from wastewater by using mechanically activated calcium carbonate. Journal of environmental management, 2017. 203: p. 1-7.
41. Cudennec, Y. and A. Lecerf, The transformation of Cu (OH) 2 into CuO, revisited. Solid state sciences, 2003. 5(11-12): p. 1471-1474.
42. Reichle, R.A., K.G. McCurdy, and L.G. Hepler, Zinc hydroxide: solubility product and hydroxy-complex stability constants from 12.5–75 C. Canadian Journal of Chemistry, 1975. 53(24): p. 3841-3845.
43. Schwartz, D.H., Successful sand control design for high rate oil and water wells. Journal of Petroleum Technology, 1969. 21(09): p. 1193-1198.
44. Miura, S. and H. Honma, Advanced copper electroplating for application of electronics. Surface and Coatings Technology, 2003. 169: p. 91-95.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *