帳號:guest(18.219.86.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃發楷
作者(外文):Huang, Fa-Kai
論文名稱(中文):單晶氮化硼之厚度及粗糙度對奈米氧化鋅/氮化硼/鋁基材雷射性能效應探討
論文名稱(外文):Effects of Thickness and Roughness of Single-Crystal h-BN Dielectric Interlayer on the Performance of ZnO/ h-BN/Al Nanolasers
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Juann
口試委員(中文):呂明諺
吳文偉
口試委員(外文):Lu, Ming-Yen
Wu, Wen-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:109031589
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:71
中文關鍵詞:奈米雷射氧化鋅氮化硼二維材料表面電漿共振奈米線
外文關鍵詞:nanolaserplasmonicSIM structureZnO nanowiresh-BNSPPs
相關次數:
  • 推薦推薦:0
  • 點閱點閱:65
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,奈米雷射備受注目。有別於傳統雷射,它並沒有繞射極限的基本物理限制。因此,我們可以將元件縮小到奈米尺度以利於置入積體電路中應用。此外,與傳統雷射相比,奈米雷射在傳輸信號時不僅速度更快,能量損失也更低。
為了應用表面等離激元 (SPP) 效應,我們使用半導體-絕緣體-金屬 (SIM) 作為奈米雷射的主要結構以此達到光增強的效果。此結構是由氧化鋅奈米線與單晶鋁基板和二維六方氮化硼組成。將化學氣相沉積製備高結晶度的氧化鋅奈米線作為室溫下的增益介質;將使用分子束磊晶沉積的單晶鋁基板作為金屬層;將機械剝離和化學氣相沉積製備的二維六方氮化硼(h-BN)分別作為絕緣層並置於氧化鋅奈米線和單晶鋁基板之間。
在添加介電層後,雷射閾值會有相當顯著的下降。結果顯示當使用五奈米化學氣相沈積轉移後的 h-BN作為介電層可以得到最低的雷射閥值(0.88 MW/cm2)。此外,不管使用任何厚度的h-BN 進行奈米來射實驗,由於較為平整,化學氣相沈積轉移後的 h-BN 都可以獲得比機械剝離轉移的h-BN 更低的雷射閥值。
Nanolasers have attracted much attention in recent years. Different from the traditional laser, it does not have a diffraction limit restriction. Therefore, one can shrink the device down to the nanometer scale to integrate it with IC circuits. Also, compared with conventional lasers, nanolasers exhibit not only higher speed but lower energy loss when transmitting signals.
In the present work, a semiconductor-insulator-metal (SIM) structure has been used. We demonstrate a surface plasmon polariton (SPP) nanolaser consisting of ZnO nanowires coupled with a single crystalline aluminum film and a high dielectric constant interlayer.
The threshold value for lasing is considerably lower with the addition of a dielectric layer. The influences of different thicknesses and processes of h-BN on the performance of nanolasers are investigated. Nanolaser with 5 nm CVD transferred h-BN has the lowest (0.88 MW/cm2) threshold value, which is consistent with the simulation results. In addition, the nanolaser with the CVD h-BN has a slightly lower threshold value than the mechanically exfoliated h-BN of different thicknesses owing to less surface roughness.
Contents i
Abstract iv
摘要 v
致謝 vi
CHAPTER 1 INTRODUCTION 2
1.1 Nanotechnology 2
1.1.1 One-Dimensional Nanostructures 3
1.1.1.1 Vapor-Liquid-Solid (VLS) Growth Mechanism 4
1.1.2 Two-Dimensional Nanostructures 5
1.2 Motivation 6
1.3 Theoretical Background of Plasmonic Nanolaser 7
1.3.1 Surface Plasmon Polariton 7
1.3.2 Surface Plasmon Polariton in Nanolasers 10
1.4 ZnO/ h-BN/ Al Plasmonic Nanolaser Structure 12
1.4.1 ZnO Nanowire 13
1.4.2 h-BN Dielectric Layer 14
1.4.3 Aluminum Substrate 15
CHAPTER 2 EXPERIMENTAL PROCEDURES 16
2.1 Synthesis of ZnO Nanowires 16
2.1.1 Preparation of Silicon Substrate 16
2.1.2 Horizontal Three Zone Furnace Growth 17
2.2 Preparation of Two-Dimensional Materials 18
2.2.1 Mechanical Exfoliation 19
2.2.2 All-Dry Viscoelastic Transferring 20
2.2.3 CVD h-BN Transferring 21
2.3 Epitaxial Aluminum Deposited by Molecular Beam Epitaxy (MBE) 22
2.4 ZnO Nanolaser Fabrication 23
2.5 Scanning Electron Microscope (SEM) 24
2.6 Transmission Electron Microscope (TEM) 26
2.7 X-Ray Diffractometer (XRD) 28
2.8 Atomic Force Microscope (AFM) 29
2.9 Micro-Raman Spectroscopy 30
2.10 Focused Ion Beam (FIB) System 31
2.11 Micro-Photoluminescence (μ-PL) Spectroscopy 32
CHAPTER 3 RESULTS AND DISCUSSION 33
3.1 Epitaxial Aluminum Film 33
3.2 Hexagonal Boron Nitride 34
3.2.1 Mechanically Exfoliated h-BN 35
3.2.2 CVD Transferred h-BN 36
3.3 Zinc Oxide Nanowires 38
3.4 Metal/ Insulator/ Semiconductor Structured Nanolaser 42
3.5 Characteristics of ZnO Nanowire on Al Film with 3.5 nm Native Oxide 45
3.6 Effects of Different Thickness of Mechanically Exfoliated h-BN on Lasing Performance 46
3.6.1 3 nm h-BN 46
3.6.2 5 nm h-BN 47
3.6.3 10 nm h-BN 48
3.7 Effects of Different Thickness of CVD h-BN on Lasing Performance 49
3.7.1 3 nm h-BN 49
3.7.2 5 nm h-BN 50
3.7.3 10 nm h-BN 51
3.8 Comparison of Different Conditions of h-BN on Lasing Performance 52
3.9 Comparison of Stability of Nanolasers with Two Kinds of h-BN 54
3.10 Simulation Results 56
3.11 Comparison of Lasing Performance with Those of Other Relevant Works 57
CHAPTER 4 SUMMARY AND CONCLUSIONS 59
CHAPTER 5 FUTURE PROSPECTS 60
5.1 Fabrication of ZnO Core-Shell/ h-BN/ Al Structure 60
5.2 Plasmonic Nanolasers Based on Graphene 61

Appendix 62
References 66
References
1. R.P. Feynman. There’s plenty of room at the bottom, in Feynman and computation. CRC Press, 63-76 (2018).

2. T.A. Saleh. Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation 20, 101067 (2020).

3. J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán, and P. Mulvaney. Gold nanorods: synthesis, characterization and applications. Coordination Chemistry Reviews 249, 17-18, 1870-1901 (2005).

4. W. Lu and C.M. Lieber. Semiconductor nanowires. Journal of Physics D: Applied Physics 39, 21, 387 (2006).

5. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, and A.M. Rao. Carbon nanotubes, in The physics of fullerene-based and fullerene-related materials. New York Springer, 331-379 (2000).

6. Z.W. Pan, Z.R. Dai, and Z.L. Wang. Nanobelts of semiconducting oxides. Science 291, 1947-1949 (2001).

7. M.S. Gudiksen, J. Wang, and C.M. Lieber. Synthetic control of the diameter and length of single crystal semiconductor nanowires. The Journal of Physical Chemistry B 105, 4062-4064 (2001).

8. Y. Cui, X. Duan, J. Hu, and C.M. Lieber. Doping and electrical transport in silicon nanowires. The Journal of Physical Chemistry B 104 5213-5216 (2000).

9. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E. Buhro. Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science 270, 1791- 1794 (1995).

10. A.P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933-937 (1996).

11. S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng, J. Chen, and S. Ramakrishna. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. Acs Nano 9, 1945-1954 (2015).

12. L. Wen, Z. Wang, Y. Mi, R. Xu, S.H. Yu, and Y. Lei. Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small 11, 3408-3428 (2015).

13. A.R. Wagner and S.W. Ellis. Vapor‐liquid‐solid mechanism of single crystal growth. Applied Physics Letters 4, 89-90 (1964).

14. J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, and H. Ruda. Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. Journal of Vacuum Science & Technology B 15, 554-557 (1997).

15. R. Ghosh and P.K. Giri. Silicon nanowire heterostructures: growth strategies, novel properties and emerging applications. Science Advance Today, (2015).

16. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao. Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C 112, 8192-8195 (2008).

17. Z. Lu, Z. Chang, W. Zhu, and X. Sun. Beta-phased Ni (OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chemical Communications 47, 9651-9653 (2011).

18. O. Bashir and Z. Khan. Silver nano-disks: Synthesis, encapsulation, and role of water soluble starch. Journal of Molecular Liquids 199, 524-529 (2014).

19. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim. Raman spectrum of graphene and graphene layers. Physical Review Letters 97, 187401(2006).

20. A.K. Geim. Graphene: status and prospects. Science 324, 1530-1534 (2009).

21. O. Salehzadeh, M. Djavid, N.H. Tran, I. Shih, and Z. Mi. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Letter 15, 5302-5306 (2015).

22. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-layer MoS2 transistors. Nature Nanotechnology 6, 147-150 (2011).

23. I. Andonovic and D. Uttamchandani. Principles of modern optical systems. Norwood (1989).

24. J. Ion. Laser processing of engineering materials: principles, procedure and industrial application. Elsevier (2005).

25. H. Kaushal and G. Kaddoum. Applications of lasers for tactical military operations. IEEE Access 5, 20736-20753 (2017).

26. E. Mester, A.F. Mester, and A. Mester. The biomedical effects of laser application. Lasers in Surgery and Medicine 5, 31-39 (1985).

27. A. Uchida. Optical communication with chaotic lasers: applications of nonlinear dynamics and synchronization. John Wiley & Sons (2012).

28. R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, and X. Zhang. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics 2, 496-500 (2008).

29. R.S. Anwar, H. Ning, and L. Mao. Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digital Communications and Networks 4, 244-257 (2018).

30. W.L. Barnes, A. Dereux, and T.W. Ebbesen. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003).

31. S. Maier. Plasmonics: fundamentals and applications. New York Springer 1 (2007).

32. A. Otto. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and Nuclei 216, 398-410 (1968).

33. R.H. Ritchie, E.T. Arakawa, J.J. Cowan, and R.N. Hamm. Surface-plasmon resonance effect in grating diffraction. Physical Review Letters 21, 1530 (1968).

34. J.R. Sambles, G.W. Bradbery, and F. Yang. Optical excitation of surface plasmons: an introduction. Contemporary Physic 32, 173-183 (1991).

35. R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, and R.O. Carlson. Coherent light emission from GaAs junctions. Physical Review Letters 9, 366 (1962).

36. S. Gwo and C.K. Shih. Semiconductor plasmonic nanolasers: current status and perspectives. Reports on Progress in Physics 79, 086501 (2016).

37. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang. Plasmon lasers at deep subwavelength scale. Nature 461, 629-632 (2009).

38. Y.J. Lu, J. Kim, H.Y. Chen, C. Wu, N. Dabidian, C.E. Sanders, C.Y. Wang, M.Y. Lu, B.H. Li, X. Qiu, and L.J. Chen. Plasmonic nanolaser using epitaxially grown silver film. in CLEO: Science and Innovations. Optica Publishing Group (2012).

39. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T.C. Sum, C.M. Lieber, and Q. Xiong. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nature Communication 5, 1-9 (2014).

40. Y.J. Lu, C.Y. Wang, J. Kim, H.Y. Chen, M.Y. Lu, Y.C. Chen, W.H. Chang, and L.J. Chen. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Letters 14, 4381-4388 (2014).

41. Z. Wu, J. Chen, Y. Mi, X. Sui, S. Zhang, W. Du, R. Wang, J. Shi, X. Wu, X. Qiu, and Z. Qin. All‐Inorganic CsPbBr3 Nanowire Based Plasmonic Lasers. Advanced Optical Material 6, 1800674 (2018).

42. C. Huang, W. Sun, Y. Fan, Y. Wang, Y. Gao, N. Zhang, K. Wang, S. Liu, S. Wang, S. Xiao, and Q. Song. Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate. ACS Nano 12, 3865-3874 (2018).

43. H. Li, J.H. Li, K.B. Hong, M.W. Yu, Y.C. Chung, C.Y. Hsu, J.H. Yang, C.W. Cheng, Z.T. Huang, K.P. Chen, and T.R. Lin. Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures. Nano Letters 19, 5017-5024 (2019).

44. X.Y. Kong, et al. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters 3, 1625-1631 (2003).

45. M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, and A.Z. Moshfegh. Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review. Research on Chemical Intermediates 45, 2197-2254 (2019).

46. D. Gérard and S.K. Gray. Aluminium plasmonics. Journal of Physics D: Applied Physics 48, 184001 (2014).

47. F. Cheng, P.H. Su, J. Choi, S. Gwo, X. Li, and C.K. Shih. Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties. ACS Nano 10, 9852-9860 (2016).

48. A. Travlos, N. Boukos, C. Chandrinou, H.S. Kwack, and L.S. Dang. Zinc and oxygen vacancies in ZnO nanorods. Journal of Applied Physics 106, 104307 (2009).

49. Y.H. Chou, Y.M. Wu, K.B. Hong, B.T. Chou, J.H. Shih, Y.C. Chung, P.Y. Chen, T.R. Lin, C.C. Lin, S.D. Lin, and T.C. Lu. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum. Nano Letters 16, 3179-3186 (2016).

50. Y.J. Liao, C.W. Cheng, B.H. Wu, C.Y. Wang, C.Y. Chen, S. Gwo, and L.J. Chen. Low threshold room-temperature UV surface plasmon polariton lasers with ZnO nanowires on single-crystal aluminum films with Al2O3 interlayers. RSC Advances 9, 13600-13607 (2019).

51. W.Y. Tien. Effects of dielectric constants and thickness of metal oxide dielectric layers on the performance of surface plasmon polariton laser. MS Thesis, Hsinchu, National Tsing Hua University (2020).

52. A. Agarwal, Y.T. Liu, Y.S. Huang, C.W. Cheng, S.N.S. Yadav, T.J. Yen, S. Gwo, M.Y. Lu, and L.J. Chen. superb low threshold surface-plasmon polariton ZnO nanolasers on an aluminum film with tailored MoO3 and Ta2O5 dielectric interlayers of varied thickness. The Journal of Physical Chemistry C 126, 11779-11787 (2022).

53. A. Agarwal, W.Y. Tien, Y.S. Huang, R. Mishra, C.W. Cheng, S. Gwo, M.Y. Lu, and L.J. Chen. ZnO nanowires on single-crystalline aluminum film coupled with an insulating WO3 interlayer manifesting low threshold SPP laser operation. Nanomaterials 10, 1680 (2020).

54. H. Huang, ZnO nanolaser with h-BN insulator on epitaxially grown aluminum substrate. MS Thesis, Hsinchu, National Tsing Hua University (2019).

55. A. Laturia, M.L. Van de Put, and W.G. Vandenberghe. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Materials and Application 2, 1-7 (2018).

56. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D.L. Elder, B. Baeuerle, Y. Salamin, A.J osten, U. Koch, and C. Hoessbacher. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics 9, 525-528 (2015).

57. J.M. Jornet and I.F. Akyildiz. Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE Journal on Selected Areas in Communication 31, 685-694 (2013).

58. L. Ye, K. Sui, Y. Liu, M. Zhang, and Q.H. Liu. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation. Optics Expres 26, 15935-15947 (2018).

59. L. Xu, F. Li, S. Liu, F. Yao, and Y. Liu. Low threshold plasmonic nanolaser based on graphene. Applied Sciences 8, 2186 (2018).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *