|
References 1. R.P. Feynman. There’s plenty of room at the bottom, in Feynman and computation. CRC Press, 63-76 (2018).
2. T.A. Saleh. Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation 20, 101067 (2020).
3. J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán, and P. Mulvaney. Gold nanorods: synthesis, characterization and applications. Coordination Chemistry Reviews 249, 17-18, 1870-1901 (2005).
4. W. Lu and C.M. Lieber. Semiconductor nanowires. Journal of Physics D: Applied Physics 39, 21, 387 (2006).
5. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, and A.M. Rao. Carbon nanotubes, in The physics of fullerene-based and fullerene-related materials. New York Springer, 331-379 (2000).
6. Z.W. Pan, Z.R. Dai, and Z.L. Wang. Nanobelts of semiconducting oxides. Science 291, 1947-1949 (2001).
7. M.S. Gudiksen, J. Wang, and C.M. Lieber. Synthetic control of the diameter and length of single crystal semiconductor nanowires. The Journal of Physical Chemistry B 105, 4062-4064 (2001).
8. Y. Cui, X. Duan, J. Hu, and C.M. Lieber. Doping and electrical transport in silicon nanowires. The Journal of Physical Chemistry B 104 5213-5216 (2000).
9. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E. Buhro. Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science 270, 1791- 1794 (1995).
10. A.P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933-937 (1996).
11. S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng, J. Chen, and S. Ramakrishna. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. Acs Nano 9, 1945-1954 (2015).
12. L. Wen, Z. Wang, Y. Mi, R. Xu, S.H. Yu, and Y. Lei. Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small 11, 3408-3428 (2015).
13. A.R. Wagner and S.W. Ellis. Vapor‐liquid‐solid mechanism of single crystal growth. Applied Physics Letters 4, 89-90 (1964).
14. J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, and H. Ruda. Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. Journal of Vacuum Science & Technology B 15, 554-557 (1997).
15. R. Ghosh and P.K. Giri. Silicon nanowire heterostructures: growth strategies, novel properties and emerging applications. Science Advance Today, (2015).
16. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao. Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C 112, 8192-8195 (2008).
17. Z. Lu, Z. Chang, W. Zhu, and X. Sun. Beta-phased Ni (OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chemical Communications 47, 9651-9653 (2011).
18. O. Bashir and Z. Khan. Silver nano-disks: Synthesis, encapsulation, and role of water soluble starch. Journal of Molecular Liquids 199, 524-529 (2014).
19. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim. Raman spectrum of graphene and graphene layers. Physical Review Letters 97, 187401(2006).
20. A.K. Geim. Graphene: status and prospects. Science 324, 1530-1534 (2009).
21. O. Salehzadeh, M. Djavid, N.H. Tran, I. Shih, and Z. Mi. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Letter 15, 5302-5306 (2015).
22. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-layer MoS2 transistors. Nature Nanotechnology 6, 147-150 (2011).
23. I. Andonovic and D. Uttamchandani. Principles of modern optical systems. Norwood (1989).
24. J. Ion. Laser processing of engineering materials: principles, procedure and industrial application. Elsevier (2005).
25. H. Kaushal and G. Kaddoum. Applications of lasers for tactical military operations. IEEE Access 5, 20736-20753 (2017).
26. E. Mester, A.F. Mester, and A. Mester. The biomedical effects of laser application. Lasers in Surgery and Medicine 5, 31-39 (1985).
27. A. Uchida. Optical communication with chaotic lasers: applications of nonlinear dynamics and synchronization. John Wiley & Sons (2012).
28. R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, and X. Zhang. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics 2, 496-500 (2008).
29. R.S. Anwar, H. Ning, and L. Mao. Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digital Communications and Networks 4, 244-257 (2018).
30. W.L. Barnes, A. Dereux, and T.W. Ebbesen. Surface plasmon subwavelength optics. Nature 424, 824-830 (2003).
31. S. Maier. Plasmonics: fundamentals and applications. New York Springer 1 (2007).
32. A. Otto. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and Nuclei 216, 398-410 (1968).
33. R.H. Ritchie, E.T. Arakawa, J.J. Cowan, and R.N. Hamm. Surface-plasmon resonance effect in grating diffraction. Physical Review Letters 21, 1530 (1968).
34. J.R. Sambles, G.W. Bradbery, and F. Yang. Optical excitation of surface plasmons: an introduction. Contemporary Physic 32, 173-183 (1991).
35. R.N. Hall, G.E. Fenner, J.D. Kingsley, T.J. Soltys, and R.O. Carlson. Coherent light emission from GaAs junctions. Physical Review Letters 9, 366 (1962).
36. S. Gwo and C.K. Shih. Semiconductor plasmonic nanolasers: current status and perspectives. Reports on Progress in Physics 79, 086501 (2016).
37. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang. Plasmon lasers at deep subwavelength scale. Nature 461, 629-632 (2009).
38. Y.J. Lu, J. Kim, H.Y. Chen, C. Wu, N. Dabidian, C.E. Sanders, C.Y. Wang, M.Y. Lu, B.H. Li, X. Qiu, and L.J. Chen. Plasmonic nanolaser using epitaxially grown silver film. in CLEO: Science and Innovations. Optica Publishing Group (2012).
39. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T.C. Sum, C.M. Lieber, and Q. Xiong. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nature Communication 5, 1-9 (2014).
40. Y.J. Lu, C.Y. Wang, J. Kim, H.Y. Chen, M.Y. Lu, Y.C. Chen, W.H. Chang, and L.J. Chen. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Letters 14, 4381-4388 (2014).
41. Z. Wu, J. Chen, Y. Mi, X. Sui, S. Zhang, W. Du, R. Wang, J. Shi, X. Wu, X. Qiu, and Z. Qin. All‐Inorganic CsPbBr3 Nanowire Based Plasmonic Lasers. Advanced Optical Material 6, 1800674 (2018).
42. C. Huang, W. Sun, Y. Fan, Y. Wang, Y. Gao, N. Zhang, K. Wang, S. Liu, S. Wang, S. Xiao, and Q. Song. Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate. ACS Nano 12, 3865-3874 (2018).
43. H. Li, J.H. Li, K.B. Hong, M.W. Yu, Y.C. Chung, C.Y. Hsu, J.H. Yang, C.W. Cheng, Z.T. Huang, K.P. Chen, and T.R. Lin. Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures. Nano Letters 19, 5017-5024 (2019).
44. X.Y. Kong, et al. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters 3, 1625-1631 (2003).
45. M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, and A.Z. Moshfegh. Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review. Research on Chemical Intermediates 45, 2197-2254 (2019).
46. D. Gérard and S.K. Gray. Aluminium plasmonics. Journal of Physics D: Applied Physics 48, 184001 (2014).
47. F. Cheng, P.H. Su, J. Choi, S. Gwo, X. Li, and C.K. Shih. Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties. ACS Nano 10, 9852-9860 (2016).
48. A. Travlos, N. Boukos, C. Chandrinou, H.S. Kwack, and L.S. Dang. Zinc and oxygen vacancies in ZnO nanorods. Journal of Applied Physics 106, 104307 (2009).
49. Y.H. Chou, Y.M. Wu, K.B. Hong, B.T. Chou, J.H. Shih, Y.C. Chung, P.Y. Chen, T.R. Lin, C.C. Lin, S.D. Lin, and T.C. Lu. High-operation-temperature plasmonic nanolasers on single-crystalline aluminum. Nano Letters 16, 3179-3186 (2016).
50. Y.J. Liao, C.W. Cheng, B.H. Wu, C.Y. Wang, C.Y. Chen, S. Gwo, and L.J. Chen. Low threshold room-temperature UV surface plasmon polariton lasers with ZnO nanowires on single-crystal aluminum films with Al2O3 interlayers. RSC Advances 9, 13600-13607 (2019).
51. W.Y. Tien. Effects of dielectric constants and thickness of metal oxide dielectric layers on the performance of surface plasmon polariton laser. MS Thesis, Hsinchu, National Tsing Hua University (2020).
52. A. Agarwal, Y.T. Liu, Y.S. Huang, C.W. Cheng, S.N.S. Yadav, T.J. Yen, S. Gwo, M.Y. Lu, and L.J. Chen. superb low threshold surface-plasmon polariton ZnO nanolasers on an aluminum film with tailored MoO3 and Ta2O5 dielectric interlayers of varied thickness. The Journal of Physical Chemistry C 126, 11779-11787 (2022).
53. A. Agarwal, W.Y. Tien, Y.S. Huang, R. Mishra, C.W. Cheng, S. Gwo, M.Y. Lu, and L.J. Chen. ZnO nanowires on single-crystalline aluminum film coupled with an insulating WO3 interlayer manifesting low threshold SPP laser operation. Nanomaterials 10, 1680 (2020).
54. H. Huang, ZnO nanolaser with h-BN insulator on epitaxially grown aluminum substrate. MS Thesis, Hsinchu, National Tsing Hua University (2019).
55. A. Laturia, M.L. Van de Put, and W.G. Vandenberghe. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Materials and Application 2, 1-7 (2018).
56. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D.L. Elder, B. Baeuerle, Y. Salamin, A.J osten, U. Koch, and C. Hoessbacher. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics 9, 525-528 (2015).
57. J.M. Jornet and I.F. Akyildiz. Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE Journal on Selected Areas in Communication 31, 685-694 (2013).
58. L. Ye, K. Sui, Y. Liu, M. Zhang, and Q.H. Liu. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation. Optics Expres 26, 15935-15947 (2018).
59. L. Xu, F. Li, S. Liu, F. Yao, and Y. Liu. Low threshold plasmonic nanolaser based on graphene. Applied Sciences 8, 2186 (2018). |