帳號:guest(18.221.107.62)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾鈺涵
作者(外文):Tseng, Yu-Han
論文名稱(中文):鐵鈷摻雜二硫化鉬的電催化氮還原反應探討
論文名稱(外文):Probing Electrocatalytic Reduction of N2 to NH3 over Fe and Co doped MoS2
指導教授(中文):呂明諺
指導教授(外文):Lu, Ming-Yen
口試委員(中文):張育誠
呂明霈
口試委員(外文):Chang, Yu-Cheng
Lu, Ming-Pei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:109031580
出版年(民國):112
畢業學年度:110
語文別:中文
論文頁數:100
中文關鍵詞:電催化氮還原二硫化鉬過渡金屬摻雜
外文關鍵詞:Electrocatalysisnitrogen reduction reactionMoS2transition metalheteroatom doping
相關次數:
  • 推薦推薦:0
  • 點閱點閱:416
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
氨不僅能作為化學原料和植物肥料,還是一種可提供高能量密度的無碳能源載體。現今,許多研究致力於尋找可再生資源的氨合成技術。其中,在常溫常壓環境下,通過電催化氮還原技術合成氨,是目前工業採用的高能源消耗及較低延續性的哈柏製氨法的替代方法。
本研究使用鐵和鈷共摻雜二硫化鉬生長在碳布上作為電催化劑,實現了在弱酸性電解液中的電催化氮還原,實驗結果顯示,相較於純二硫化鉬,適當摻雜濃度的鐵鈷共摻雜二硫化鉬,在各個電壓下的氨產率皆大幅度上升,在電位-0.55 V,達到3.27 µg h−1 cm−2之氨產率,超過純二硫化鉬、鐵摻雜二硫化鉬及鈷摻雜二硫化鉬的氨產率,分別為191%、176%及116%;法拉第效率也有明顯提升,在電位-0.35 V,達到6.28%之法拉第效率,分別為純二硫化鉬、鐵摻雜二硫化鉬及鈷摻雜二硫化鉬的217%、186%及132%之法拉第效率,顯示提高鐵摻雜濃度並加入少量的鈷摻雜,可以提升材料的催化活性。而增強的電催化產氨性能可歸因於鐵和鈷摻雜原子的協同作用,不僅引入活性位點,增加材料本質活性,還促進了材料的電荷轉移。
此外,密度泛函理論計算結果顯示鐵鈷共摻雜二硫化鉬的反應最佳路徑為末端途徑,且其電位決定步驟之自由能障僅0.54 eV,比純二硫化鉬之自由能障1.13 eV低許多,表示鐵鈷共摻雜二硫化鉬能有更好的催化活性;而巴德電荷分析結果顯示鐵鈷共摻雜可促進電荷轉移,減弱鉬原子對反應中間產物之吸附能力,使氮還原反應優先發生在作為活化位置的鐵原子,綜合上述,適量的鐵鈷共摻雜濃度能使二硫化鉬的催化活性提升。
Ammonia is not only essential to life as a chemical feedstock and fertilizers but also considered as a carbon-free energy carrier that offers high energy density. Nowadays, many efforts have been devoted to searching renewable-energy-based NH3 synthesis techniques. In particular, NH3 synthesis by the electrocatalytic N2 reduction reaction (NRR) under ambient conditions is a promising alternative way to the currently employed energy-intensive and non-sustainable Haber-Bosch process.
In this thesis, we demonstrated that the NRR could be achieved by using Fe and Co co-doping MoS2 nanosheets supported on carbon cloth that served as an electrocatalyst. At optimal doping concentration, Fe and Co co-doping MoS2 exhibited an ammonia yield rate of 3.27 µg h−1 cm−2 at −0.55 V versus RHE, which reached higher performance than that of undoped MoS2, Fe-doped MoS2 and Co-doped MoS2 samples by 191%, 176% and 116%, respectively, and a FE of 6.28% at -0.35 V versus RHE, exceeding that of undoped MoS2, Fe-doped MoS2 and Co-doped MoS2 samples by 217%, 186% and 132%, respectively. The enhanced NRR performance can be attributed to the synergistic effects of Fe and Co dopants which induce the active sites, increase intrinsic activity, and promote the charge transfer.
Additionally, density functional theory calculations reveal that the preferred reaction pathway of FeCo-MoS2 electrocatalyst is distal pathway and its potential-determining step has a lower energy barrier(0.54 eV)than that of undoped MoS2(1.13 eV)which indicates FeCo-MoS2 possesses better electrocatalytic activity. Besides, the Bader analysis shows that Fe and Co dopants enable electron transfer and thus optimize the free energies of reaction intermediates. Therefore, Fe and Co were determined to be effective dopants for boosting the NRR activity of MoS2 catalyst.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論與文獻探討 1
1.1. 氨能源 1
1.2. 氨合成方法 3
1.2.1. 自然固氮 4
1.2.2. 哈柏法製氨 5
1.2.3. 光催化產氨 6
1.2.4. 電催化產氨 9
1.3. 電催化氮還原產氨反應 11
1.3.1. 反應機制 11
1.3.2. 反應路徑 12
1.3.3. 氮還原表現指標 14
1.3.4. 密度泛函理論(Density functional theory, DFT)計算 15
1.4. 氨氣產量之定量測定方法 17
1.4.1. 分光光度法(Spectrophotometry) 17
1.4.2. 離子層析法(Ion chromatography, IC) 18
1.4.3. 離子選擇電極法(Ion-selective electrode, ISE) 19
1.4.4. 核磁共振光譜法(Nuclear magnetic resonance, NMR) 19
1.5. 催化劑的發展與設計 20
1.5.1. 二維材料 21
1.5.2. 二硫化鉬材料 22
1.5.2.1. 二硫化鉬基本性質 22
1.5.2.2. 二硫化鉬製備方法 23
1.5.2.3. 二硫化鉬作為電催化產氨反應的催化劑 26
1.5.3. 摻雜對催化的影響 28
1.5.3.1. 鐵摻雜原子 29
1.5.3.2. 鈷摻雜原子 30
1.6. 研究動機 32
第二章 實驗方法與儀器 33
2.1. 實驗架構 33
2.2. 電催化劑之製備流程 34
2.2.1. 二硫化鉬/碳布複合材料(MoS2/CC)之合成 34
2.2.2. 鐵摻雜二硫化鉬/碳布複合材料(Fe-MoS2/CC)之合成 34
2.2.3. 鈷摻雜二硫化鉬/碳布複合材料(Co-MoS2/CC)之合成 34
2.2.4. 鐵鈷摻雜二硫化鉬/碳布複合材料(FeCo-MoS2/CC)之合成 35
2.2.5. 工作電極製備 36
2.3. 電化學分析之系統架設 37
2.3.1. 電解池 37
2.3.2. 離子交換膜 38
2.3.3. 氣體 38
2.4. 靛酚藍分光光度法測定氨氣產量 39
2.5. 實驗儀器介紹 40
2.5.1. 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 40
2.5.2. 顯微拉曼散射光譜儀(Micro-Raman Spectroscope) 41
2.5.3. X光繞射分析儀(X-Ray Diffractometer, XRD) 42
2.5.4. 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 43
2.5.5. 能量色散X光光譜儀(Energy-dispersive X-ray Spectroscope, EDS) 45
2.5.6. X光光電子能譜儀(X-ray Photoelectron Spectroscope, XPS) 46
2.5.7. 紫外光-可見光吸收光譜儀(UV-Visible Spectroscope) 47
2.5.8. 電化學分析儀(Electrochemical analyzer) 48
第三章 結果與討論 49
3.1. 結構鑑定 49
3.1.1. SEM影像分析 49
3.1.2. XRD分析 52
3.1.3. Raman光譜分析 53
3.1.4. TEM分析 55
3.1.5. XPS能譜分析 59
3.2. 電催化表現分析 64
3.2.1. LSV分析 64
3.2.2. CA分析 68
3.2.3. 氨氣產量測定分析 72
3.2.4. 氮還原性能分析 75
3.3. DFT理論計算 79
3.3.1. 計算方法 79
3.3.2. 優化幾何結構 80
3.3.3. 反應機構自由能圖 82
3.3.4. 巴德電荷分析(Bader charge analysis) 85
3.4. 產氨比較 87
第四章 結論 88
第五章 未來展望 89
參考文獻 90
1. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. How a century of ammonia synthesis changed the world. Nat Geosci 1, 636-639 (2008).

2. Wang S, Ichihara F, Pang H, Chen H, Ye J. Nitrogen fixation reaction derived from nanostructured catalytic materials. Adv Funct Mater 28, 1803309-1803335 (2018).

3. Nørskov J, Chen J, Miranda R, Fitzsimmons T, Stack R. Sustainable Ammonia Synthesis–Exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production.). US DOE Office of Science (2016).

4. Ghavam S, Vahdati M, Wilson I, Styring P. Sustainable ammonia production processes. Front Energy Res, 34 (2021).

5. Morlanés N, et al. A technological roadmap to the ammonia energy economy: Current state and missing technologies. Chem Eng 408, 127310 (2021).

6. Li H, Huang C. Recent Advances in the Application of Structural‐Phase Engineering Strategies in Electrochemical Nitrogen Reduction Reaction. Adv Mater Interfaces 7, 2001215 (2020).

7. Medford AJ, Hatzell MC. Photon-Driven Nitrogen Fixation: Current Progress, Thermodynamic Considerations, and Future Outlook. ACS Catal 7, 2624-2643 (2017).

8. Rao N, Dube S, Natarajan P. Photocatalytic reduction of nitrogen over (Fe, Ru or Os)/TiO2 catalysts. Appl Catal B 5, 33-42 (1994).

9. Guo C, Ran J, Vasileff A, Qiao S-Z. Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ Sci 11, 45-56 (2018).

10. Li R. Photocatalytic nitrogen fixation: An attractive approach for artificial photocatalysis. Chinese J Catal 39, 1180-1188 (2018).

11. Ren Y, Yu C, Tan X, Huang H, Wei Q, Qiu J. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives. Energy & Environmental Science 14, 1176-1193 (2021).

12. Wu T, Fan W, Zhang Y, Zhang F. Electrochemical synthesis of ammonia: Progress and challenges. Mater Today Phys 16, 100310 (2021).

13. Wang Q, Guo J, Chen P. Recent progress towards mild-condition ammonia synthesis. J Energy Chem 36, 25-36 (2019).

14. Canfield DE, Glazer AN, Falkowski PG. The evolution and future of Earth’s nitrogen cycle. Science 330, 192-196 (2010).

15. Xue X, et al. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res 12, 1229-1249 (2019).

16. Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Mol Biol Evol 21, 541-554 (2004).

17. Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol 16, 263-276 (2018).

18. Li C, Wang T, Gong J. Alternative strategies toward sustainable ammonia synthesis. Trans Tianjin Univ 26, 67-91 (2020).

19. Seefeldt LC, Hoffman BM, Dean DR. Electron transfer in nitrogenase catalysis. Curr Opin Chem Biol 16, 19-25 (2012).

20. Modak JM. Haber process for ammonia synthesis. Resonance 7, 69-77 (2002).

21. Vu M-H, Sakar M, Do T-O. Insights into the Recent Progress and Advanced Materials for Photocatalytic Nitrogen Fixation for Ammonia (NH3) Production. Catalysts 8, (2018).

22. Foster SL, et al. Catalysts for nitrogen reduction to ammonia. Nat Catal 1, 490-500 (2018).

23. Chen S, Liu D, Peng T. Fundamentals and Recent Progress of Photocatalytic Nitrogen‐Fixation Reaction over Semiconductors. Sol RRL 5, 2000487 (2020).

24. Schrauzer G, Guth T. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J Am Chem Soc 99, 7189-7193 (2002).

25. Zhao W, et al. Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Appl Catal B 144, 468-477 (2014).

26. Luo J, et al. Band structure engineering of bioinspired Fe doped SrMoO4 for enhanced photocatalytic nitrogen reduction performance. Nano Energy 66, (2019).

27. Brown KA, et al. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid. Science 352, 448-450 (2016).

28. Van Tamelen EE, Seeley DA. Catalytic fixation of molecular nitrogen by electrolytic and chemical reduction. J Am Chem Soc 91, 5194-5194 (1969).

29. Sclafani A, Augugliaro V, Schiavello M. Dinitrogen electrochemical reduction to ammonia over iron cathode in aqueous medium. J Electrochem Soc 130, 734 (1983).

30. Zhao X, Hu G, Chen GF, Zhang H, Zhang S, Wang H. Comprehensive Understanding of the Thriving Ambient Electrochemical Nitrogen Reduction Reaction. Adv Mater 33, e2007650 (2021).

31. Wang Y, et al. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chem Rev 120, 12217-12314 (2020).

32. Mills JP, Du C, Chen Z, Guo T, Wu YA. Catalyst design strategies for aqueous N2 electroreduction. Appl Mater Today 25, 101184 (2021).

33. Liu D, et al. Development of Electrocatalysts for Efficient Nitrogen Reduction Reaction under Ambient Condition. Adv Funct Mater 31, 2008983 (2020).

34. Huang Y, Babu DD, Peng Z, Wang Y. Atomic modulation, structural design, and systematic optimization for efficient electrochemical nitrogen reduction. Adv Sci 7, 1902390 (2020).

35. Shipman MA, Symes MD. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal Today 286, 57-68 (2017).

36. Mars P, Van Krevelen DW. Oxidations carried out by means of vanadium oxide catalysts. Chem Eng Sci 3, 41-59 (1954).

37. Skulason E, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys Chem Chem Phys 14, 1235-1245 (2012).

38. Zhai X, et al. A DFT screening of single transition atoms supported on MoS2 as highly efficient electrocatalysts for the nitrogen reduction reaction. Nanoscale 12, 10035-10043 (2020).

39. Zhou L, Boyd CE. Comparison of Nessler, phenate, salicylate and ion selective electrode procedures for determination of total ammonia nitrogen in aquaculture. Aquaculture 450, 187-193 (2016).

40. Thomas D, Rey M, Jackson P. Determination of inorganic cations and ammonium in environmental waters by ion chromatography with a high-capacity cation-exchange column. J Chromatogr A 956, 181-186 (2002).

41. LeDuy A, Samson R. Testing of an ammonia ion selective electrode for ammonia nitrogen measurement in the methanogenic sludge. Biotechnol Lett 4, 303-306 (1982).

42. Liu J, et al. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc Nat Acad Sci 113, 5530-5535 (2016).

43. Cui X, Tang C, Zhang Q. A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Adv Energy Mater 8, (2018).

44. Zhao Y, Yan L, Zhao X. Development of Carbon‐Based Electrocatalysts for Ambient Nitrogen Reduction Reaction: Challenges and Perspectives. ChemElectroChem 9, e20210112 (2021).

45. Bahadir O. Ion-Exchange Chromatography and Its Applications. Column Chromatography (2013).

46. NUTRITION ISOP. A guide to the use of nitrogen-15 and radioisotopes in studies of plant nutrition: Calculations and interpretation of data. (1983).

47. Singh AR, et al. Electrochemical Ammonia Synthesis - The Selectivity Challenge. ACS Catal 7, 706-709 (2017).

48. Qing G, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem Rev 120, 5437-5516 (2020).

49. Zhang S, Zhao Y, Shi R, Waterhouse GIN, Zhang T. Photocatalytic ammonia synthesis: Recent progress and future. EnergyChem 1, 100013 (2019).

50. Zhao L, et al. Anchoring Au (111) on a bismuth sulfide nanorod: Boosting the artificial electrocatalytic nitrogen reduction reaction under ambient conditions. ACS Appl Mater Interfaces 12, 55838-55843 (2020).

51. Chen Y, et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites. ACS Nano 14, 6938-6946 (2020).

52. Légaré M-A, et al. Nitrogen fixation and reduction at boron. Science 359, 896-900 (2018).

53. Hoang Huy VP, Ahn YN, Hur J. Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries. Nanomaterials 11, 1517 (2021).

54. Giuffredi G, Asset T, Liu Y, Atanassov P, Di Fonzo F. Transition Metal Chalcogenides as a Versatile and Tunable Platform for Catalytic CO2 and N2 Electroreduction. ACS Materials Au 1, 6-36 (2021).

55. Wu Z, Zhang R, Fei H, Liu R, Wang D, Liu X. Multiphasic 1T@ 2H MoSe2 as a highly efficient catalyst for the N2 reduction to NH3. Appl Surf Sci 532, 147372 (2020).

56. Ma L, et al. Sulfur defect-rich WS2−x nanosheet electrocatalysts for N2 reduction. Sci China Mater 64, 1910-1918 (2021).

57. Suryanto BHR, et al. MoS2 Polymorphic Engineering Enhances Selectivity in the Electrochemical Reduction of Nitrogen to Ammonia. ACS Energy Lett 4, 430-435 (2018).

58. Liu B, Ma C, Liu D, Yan S. Sulfur‐Vacancy Defective MoS2 as a Promising Electrocatalyst for Nitrogen Reduction Reaction under Mild Conditions. ChemElectroChem 8, 3030-3039 (2021).

59. Wang H, et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett 12, 4674-4680 (2012).

60. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol 6, 147-150 (2011).

61. Roy K, et al. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotechnol 8, 826-830 (2013).

62. Tsai M-L, et al. Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317-8322 (2014).

63. Kufer D, Konstantatos G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett 15, 7307-7313 (2015).

64. Wang X, et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv Mater 27, 6575-6581 (2015).

65. Jawaid A, et al. Mechanism for liquid phase exfoliation of MoS2. Chem Mater 28, 337-348 (2016).

66. Liu H, Wong SL, Chi D. CVD growth of MoS2‐based two‐dimensional materials. Chem Vap Deposition 21, 241-259 (2015).

67. Perkgoz NK, Bay M. Investigation of single-wall MoS2 monolayer flakes grown by chemical vapor deposition. Nanomicro Lett 8, 70-79 (2016).

68. Orofeo CM, Suzuki S, Sekine Y, Hibino H. Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Appl Phys Lett 105, 083112 (2014).

69. Chiappe D, et al. Controlled sulfurization process for the synthesis of large area MoS2 films and MoS2/WS2 heterostructures. Adv Mater Interfaces 3, 1500635 (2016).

70. Shahzad R, Kim T, Kang S-W. Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis. Thin Solid Films 641, 79-86 (2017).

71. Li M, et al. Facile hydrothermal synthesis of MoS2 nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation. RSC Adv 6, 71534-71542 (2016).

72. Zhan Y, Liu Z, Najmaei S, Ajayan PM, Lou J. Large‐area vapor‐phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966-971 (2012).

73. Choudhary N, Park J, Hwang JY, Choi W. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl Mater Interfaces 6, 21215-21222 (2014).

74. Lin Z, et al. Controllable growth of large–size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci Rep 5, 1-10 (2015).

75. Yu Y, Li C, Liu Y, Su L, Zhang Y, Cao L. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci Rep 3, 1-6 (2013).

76. Peng Y, et al. Hydrothermal synthesis of MoS2 and its pressure-related crystallization. J Solid State Chem 159, 170-173 (2001).

77. Zeng L, Chen S, van der Zalm J, Li X, Chen A. Sulfur vacancy-rich N-doped MoS2 nanoflowers for highly boosting electrocatalytic N2 fixation to NH3 under ambient conditions. ChemComm 55, 7386-7389 (2019).

78. Fei H, et al. Sulfur vacancy engineering of MoS2 via phosphorus incorporation for improved electrocatalytic N2 reduction to NH3. Appl Catal B 300, 120733 (2022).

79. Liang J, et al. Boosting the acidic electrocatalytic nitrogen reduction performance of MoS2 by strain engineering. J Mater Chem A 8, 10426-10432 (2020).

80. Zhang L, et al. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies. Adv Mater 30, 1800191 (2018).

81. Chen S, Liu X, Xiong J, Mi L, Li Y. Engineering strategies for boosting the nitrogen reduction reaction performance of MoS2-based electrocatalysts. Mater Today Nano 18, 100202 (2022).

82. Zeng L, Li X, Chen S, Wen J, Huang W, Chen A. Unique hollow Ni–Fe@MoS2 nanocubes with boosted electrocatalytic activity for N2 reduction to NH3. J Mater Chem A 8, 7339-7349 (2020).

83. Chu K, Liu YP, Li YB, Guo YL, Tian Y. Two-dimensional (2D)/2D Interface Engineering of a MoS2/C3N4 Heterostructure for Promoted Electrocatalytic Nitrogen Fixation. ACS Appl Mater Interfaces 12, 7081-7090 (2020).

84. Shi L, Yin Y, Wang S, Sun H. Rational Catalyst Design for N2 Reduction under Ambient Conditions: Strategies toward Enhanced Conversion Efficiency. ACS Catal 10, 6870-6899 (2020).

85. Xu Y, Liu X, Cao N, Xu X, Bi L. Defect engineering for electrocatalytic nitrogen reduction reaction at ambient conditions. SM&T 27, e00229 (2021).

86. Lv C, et al. An amorphous noble‐metal‐free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew Chem Int Ed 130, 6181-6184 (2018).

87. Liu W, et al. Anderson localization in 2D amorphous MoO3‐x monolayers for electrochemical ammonia synthesis. ChemCatChem 11, 5412-5416 (2019).

88. Kong X, et al. Defect engineering of nanostructured electrocatalysts for enhancing nitrogen reduction. J Mater Chem A 8, 7457-7473 (2020).

89. Yang C, et al. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy 77, 105126 (2020).

90. Bao D, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv Mater 29, 1604799 (2017).

91. Huang H, Li F, Xue Q, Zhang Y, Yin S, Chen Y. Salt‐Templated Construction of Ultrathin Cobalt Doped Iron Thiophosphite Nanosheets toward Electrochemical Ammonia Synthesis. Small 15, 1903500 (2019).

92. Qian Y, Liu Y, Zhao Y, Zhang X, Yu G. Single vs double atom catalyst for N2 activation in nitrogen reduction reaction: A DFT perspective. EcoMat 2, 12014 (2020).

93. Wei Z, He J, Yang Y, Xia Z, Feng Y, Ma J. Fe, V-co-doped C2N for electrocatalytic N2-to-NH3 conversion. J Energy Chem 53, 303-308 (2021).

94. Chu K, Cheng Y-h, Li Q-q, Liu Y-p, Tian Y. Fe-doping induced morphological changes, oxygen vacancies and Ce3+–Ce3+ pairs in CeO2 for promoting electrocatalytic nitrogen fixation. J Mater Chem A 8, 5865-5873 (2020).

95. Tong Y, et al. Vacancy Engineering of Iron-Doped W18O49 Nanoreactors for Low-Barrier Electrochemical Nitrogen Reduction. Angew Chem Int Ed 59, 7356-7361 (2020).

96. Huang H, Li F, Xue Q, Zhang Y, Yin S, Chen Y. Salt-Templated Construction of Ultrathin Cobalt Doped Iron Thiophosphite Nanosheets toward Electrochemical Ammonia Synthesis. Small 15, e1903500 (2019).

97. Zhang J, et al. Cobalt-Modulated Molybdenum-Dinitrogen Interaction in MoS2 for Catalyzing Ammonia Synthesis. J Am Chem Soc 141, 19269-19275 (2019).

98. Li H, et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 22, 1385-1390 (2012).

99. Huang C, et al. Vertical kinetically oriented MoS2–Mo2N heterostructures on carbon cloth: a highly efficient hydrogen evolution electrocatalyst. Sustain Energy Fuels 4, 2201-2207 (2020).

100. Gao M-R, Chan MK, Sun Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat Commun 6, 1-8 (2015).

101. Li F, Chen L, Liu H, Wang D, Shi C, Pan H. Enhanced N2-Fixation by Engineering the Edges of Two-Dimensional Transition-Metal Disulfides. J Phys Chem C 123, 22221-22227 (2019).

102. Zhao X, Zhang X, Xue Z, Chen W, Zhou Z, Mu T. Fe nanodot-decorated MoS2 nanosheets on carbon cloth: an efficient and flexible electrode for ambient ammonia synthesis. J Mater Chem A 7, 27417-27422 (2019).

103. Wang Y, Cong C, Qiu C, Yu T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 9, 2857-2861 (2013).

104. Chen N, et al. Carbon coated MoS2 nanosheets vertically grown on carbon cloth as efficient anode for high-performance sodium ion hybrid capacitors. Electrochim Acta 283, 36-44 (2018).

105. Wang Y, et al. Boosting nitrogen reduction to ammonia on FeN4 sites by atomic spin regulation. Adv Sci 8, 2102915 (2021).

106. Wang C, et al. Hierarchical CoS2/MoS2 flower-like heterostructured arrays derived from polyoxometalates for efficient electrocatalytic nitrogen reduction under ambient conditions. J Colloid Interface Sci 609, 815-824 (2022).

107. Zhang H, Cui C, Luo Z. MoS2-Supported Fe2 Clusters Catalyzing Nitrogen Reduction Reaction to Produce Ammonia. J Phys Chem C 124, 6260-6266 (2020).

108. Guo Y, et al. Boosting nitrogen reduction reaction by bio-inspired FeMoS containing hybrid electrocatalyst over a wide pH range. Nano Energy 62, 282-288 (2019).

109. Wang Z, et al. Electrocatalytic Nitrogen Reduction to Ammonia by Fe2O3 Nanorod Array on Carbon Cloth. ACS Sustainable Chemistry & Engineering 7, 11754-11759 (2019).

110. Ahmed MI, Chen S, Ren W, Chen X, Zhao C. Synergistic bimetallic CoFe2O4 clusters supported on graphene for ambient electrocatalytic reduction of nitrogen to ammonia. Chem Commun 55, 12184-12187 (2019).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *