|
1. Ruiyuan, L. and S. Baoquan, Silicon-based organic/inorganic hybrid solar cells. ACTA CHIMICA SINICA, 2015. 73(3): p. 225-236. 2. Singh, E., et al., Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS applied materials & interfaces, 2017. 9(4): p. 3223-3245. 3. Zhang, F., T. Song, and B. Sun, Conjugated polymer–silicon nanowire array hybrid Schottky diode for solar cell application. Nanotechnology, 2012. 23(19): p. 194006. 4. Raj, V., H.H. Tan, and C. Jagadish, Axial vs. Radial Junction Nanowire Solar Cell. arXiv preprint arXiv:2103.13190, 2021. 5. Chen, J., et al., Fabrication of high-performance ordered radial junction silicon nanopencil solar cells by fine-tuning surface carrier recombination and structure morphology. Nano Energy, 2019. 56: p. 604-611. 6. Hong, L., et al., High efficiency silicon nanohole/organic heterojunction hybrid solar cell. Applied Physics Letters, 2014. 104(5): p. 053104. 7. Wei, W.-R., et al., Above-11%-efficiency organic–inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. Nano letters, 2013. 13(8): p. 3658-3663. 8. Yu, P., et al., Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today, 2016. 11(6): p. 704-737. 9. Gunawan, O. and S. Guha, Characteristics of vapor–liquid–solid grown silicon nanowire solar cells. Solar Energy Materials and Solar Cells, 2009. 93(8): p. 1388-1393. 10. Leonardi, A.A., M.J.L. Faro, and A. Irrera, Silicon nanowires synthesis by metal-assisted chemical etching: a review. Nanomaterials, 2021. 11(2): p. 383. 11. Huang, Z., et al., Metal‐assisted chemical etching of silicon: a review: in memory of Prof. Ulrich Gösele. Advanced materials, 2011. 23(2): p. 285-308. 12. Nawz, T., et al., Graphene to advanced MoS2: a review of structure, synthesis, and optoelectronic device application. Crystals, 2020. 10(10): p. 902. 13. Samy, O., et al., A Review on MoS2 properties, synthesis, sensing applications and challenges. Crystals, 2021. 11(4): p. 355. 14. Toh, R.J., et al., 3R phase of MoS 2 and WS 2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017. 53(21): p. 3054-3057. 15. Li, X. and H. Zhu, Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomics, 2015. 1(1): p. 33-44. 16. Lee, C., et al., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 2010. 4(5): p. 2695-2700. 17. Lim, Y.R., et al., Wafer‐scale, homogeneous MoS2 layers on plastic substrates for flexible visible‐light photodetectors. Advanced Materials, 2016. 28(25): p. 5025-5030. 18. Tsai, M.-L., et al., Monolayer MoS2 heterojunction solar cells. ACS nano, 2014. 8(8): p. 8317-8322. 19. Hao, L., et al., Electrical and photovoltaic characteristics of MoS2/Si pn junctions. Journal of Applied Physics, 2015. 117(11): p. 114502. 20. Lin, Y., et al., 17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT: PSS. Advanced materials, 2019. 31(46): p. 1902965. 21. Song, I., et al., Conductive channel formation for enhanced electrical conductivity of PEDOT: PSS with high work-function. Applied Surface Science, 2020. 529: p. 147176. 22. Ouyang, J., et al., On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer, 2004. 45(25): p. 8443-8450. 23. Ouyang, L., et al., Imaging the phase separation between PEDOT and polyelectrolytes during processing of highly conductive PEDOT: PSS films. ACS applied materials & interfaces, 2015. 7(35): p. 19764-19773. 24. Alemu, D., et al., Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy & environmental science, 2012. 5(11): p. 9662-9671. 25. Kim, Y.H., et al., Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post‐treatment for ITO‐free organic solar cells. Advanced Functional Materials, 2011. 21(6): p. 1076-1081. 26. Oh, J.Y., et al., Effect of PEDOT nanofibril networks on the conductivity, flexibility, and coatability of PEDOT: PSS films. ACS applied materials & interfaces, 2014. 6(9): p. 6954-6961. 27. Pietsch, M., M.Y. Bashouti, and S. Christiansen, The role of hole transport in hybrid inorganic/organic silicon/poly (3, 4-ethylenedioxy-thiophene): poly (styrenesulfonate) heterojunction solar cells. The Journal of Physical Chemistry C, 2013. 117(18): p. 9049-9055. 28. Thomas, J.P., et al., High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition. Journal of materials chemistry A, 2014. 2(7): p. 2383-2389. 29. Thomas, J.P. and K.T. Leung, Defect‐minimized PEDOT: PSS/planar‐Si solar cell with very high efficiency. Advanced functional materials, 2014. 24(31): p. 4978-4985. 30. Thomas, J.P., et al., Reversible structural transformation and enhanced performance of PEDOT: PSS-based hybrid solar cells driven by light intensity. ACS applied materials & interfaces, 2015. 7(14): p. 7466-7470. 31. Jiang, X., et al., High performance silicon–organic hybrid solar cells via improving conductivity of PEDOT: PSS with reduced graphene oxide. Applied Surface Science, 2017. 407: p. 398-404. 32. Fang, X., et al., Two-dimensional CoS nanosheets used for high-performance organic–inorganic hybrid solar cells. The Journal of Physical Chemistry C, 2014. 118(35): p. 20238-20245. 33. Li, Q., et al., High performance silicon/organic hybrid solar cells with dual localized surface plasmonic effects of Ag and Au nanoparticles. Solar RRL, 2018. 2(5): p. 1800028. 34. Ge, Z., et al., Substantial improvement of short wavelength response in n-SiNW/PEDOT: PSS solar cell. Nanoscale research letters, 2015. 10(1): p. 1-8. 35. Pudasaini, P.R., et al., High efficiency hybrid silicon nanopillar–polymer solar cells. ACS applied materials & interfaces, 2013. 5(19): p. 9620-9627. 36. He, L., et al., Effects of nanowire texturing on the performance of Si/organic hybrid solar cells fabricated with a 2.2 μ m thin-film Si absorber. Applied physics letters, 2012. 100(10): p. 103104. 37. Dileep, K., et al., Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy. Journal of Applied Physics, 2016. 119(11): p. 114309. 38. Li, S., et al., Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE. Journal of Solid State Chemistry, 2014. 213: p. 242-249. 39. He, J., et al., Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression. Acs Nano, 2015. 9(6): p. 6522-6531. 40. Wang, D., et al., MoS2 incorporated hybrid hole transport layer for high performance and stable perovskite solar cells. Synthetic Metals, 2018. 246: p. 195-203. 41. Putra, I.R., et al., Simple cosolvent-treated PEDOT: PSS films on hybrid solar cells with improved efficiency. IEEE Journal of Photovoltaics, 2020. 10(3): p. 771-776. 42. Kohnehpoushi, S., et al., MoS2: a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells. Nanotechnology, 2018. 29(20): p. 205201. |