帳號:guest(3.149.245.230)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李玉虎
作者(外文):Li, Yu-Hu
論文名稱(中文):添加銀及表面硫化對銅銦鎵硒薄膜太陽能電池的影響
論文名稱(外文):The impact of the Cu(In,Ga)(Se,S)2 thin film solar cell by Ag incorporation and surface sulfurization
指導教授(中文):賴志煌
甘炯耀
指導教授(外文):Lai, Chih-Huang
Gan, Jon-Yiew
口試委員(中文):沈昌宏
林姿瑩
口試委員(外文):Shen, Chang-Hong
Lin, Tzu-Ying
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:109031571
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:52
中文關鍵詞:銅銦鎵硒硒硫化薄膜太陽能電池
外文關鍵詞:Cu(In,Ga)Se2sulfurization after selenizationthin film solar cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:204
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
銅銦鎵硒薄膜太陽能電池是目前最有最有潛力的第二代太陽能電池之一。其優勢體現在具有直接能隙、優秀的能帶操控性以及輕薄可撓等。目前最高的轉換效率為23.35%,其所用製程為硒化後硫化製程。除了硫化處理,銀合金化也被認爲是一種相當具有潛力的提高效率的方式。但目前大部分對添加銀的研究僅僅停留在硒化以及共蒸鍍的研究,對硒硫化製程的研究知之甚少。
本研究使用濺鍍方式在前驅層中鍍上一層AgGa薄膜,在通過硒化後硫化的方式製作出銀合金且表面硫化的(Ag,Cu)(In,Ga)(Se,S)2吸收層。通過製作高銀含量以及低銀含量之試片探討銀對與硒硫化製程之影響。研究表明,硫化後的試片的Cu,Ag分佈有發生了改變,導致能帶匹配產生改變。以及添加少量銀易使試片產生銅缺相(OVC phase),同樣也會使介面匹配改變。
最後,通過添加10%銀,可以獲得元件效率最高可達15.2%。
CIGS thin-film solar cells are one of the most promising second-generation solar cells available. Its advantages include direct energy gap, excellent band manipulating and flexibility. The highest conversion efficiency is currently 23.35%, and the process used is sulfurization after selenization(SAS). In addition to sulfurization, silver alloying is also considered to be a promising way to improve efficiency. However, most of the research on silver addition is limited to selenization and co-evaporation, and little research is done on the sulfurization after selenization process.
In this study, a thin AgGa film was deposited in the precursor layer by sputtering, and a silver alloy with a surface sulfidation of (Ag,Cu)(In,Ga)(Se,S)2 absorber layer was produced by selenization followed by sulfurization. The effect of silver on the SAS process was investigated by making specimens with high and low silver content. It was shown that the Cu,Ag distribution of the sulfided specimens changed, resulting in a change in the energy band matching. The addition of a small amount of silver tends to produce an OVC phase in the specimen, which also changes the interface match.
Finally, by adding 10% silver, the device efficiency can be obtained up to 15.2%.

第1章 緒論 研究動機與目的 7
第2章 文獻回顧 8
2.1 太陽能電池工作原理 8
2.2 太陽能電池物理 8
2.2.1 PN接面二極體 8
2.2.2 PN接面的光伏效應 9
2.3 電流-電壓曲綫 (I-V curve) 10
2.3.1 開路電壓 10
2.3.2 短路電流 10
2.3.3 填充因子 10
2.3.4 光電轉換效率 10
2.4 銅銦鎵硒(CIGSe)太陽能電池 10
2.4.1 銅銦鎵硒(CIGSe)的晶體結構 11
2.4.2 銅銦鎵硒本質摻雑物理 11
2.5 CIGSe的太陽能電池製程 12
2.5.1 共蒸鍍製程(co-evaporation) 12
2.5.2 合金後硒化製程 12
2.5.3 硫化製程 13
2.6 能帶工程 13
2.7 硫化對CIGSe吸收層的影響 16
2.8 添加銀合金化 18
第3章 實驗流程與分析 25
3.1 吸收層製備 25
3.1.1 真空濺鍍鍍膜技術 25
3.1.2 硒化製程(selenization) 25
3.1.3 硫化製程(sulfurization) 25
3.2 元件製作 26
3.2.1 化學水浴法製備緩衝層 26
3.2.2 濺鍍鍍窗口層 26
3.2.3 蒸鍍鍍製上電極 26
3.3 材料分析方法與設備 27
3.3.1 X射綫螢光光譜分析 27
3.3.2 X射線光電子能譜分析 28
3.3.3 歐傑電子能譜儀分析 29
3.3.4 掃描電子顯微鏡分析 29
3.3.5 X射綫繞射儀分析 30
3.3.6 拉曼光譜儀分析 31
3.3.7 電流-電壓特性量測 31
3.3.8 外部量子效率量測 32
第4章 實驗結果與討論 34
4.1 第一部分 添加銀之純硒化試片 34
4.1.1 表面形貌 34
4.1.2 元件表現 35
4.2 第二部分 高銀含量硫化之試片(AAC50) 36
4.2.1 硫化後表面形貌 36
4.2.2 XPS縱深分析 36
4.2.3 銅銀反轉成因探討 38
4.2.4 高銀含量硫化電性表現 39
4.3 第三部分 較低銀含量硫化之試片 40
4.3.1 表面形貌 40
4.3.2 相分析 41
4.3.3 硫化後的元件電性 46
第5章 結論 48
第6章 參考文獻 49
1. Gray, J. L., The Physics of the Solar Cell. In Handbook of Photovoltaic Science and Engineering, 2003; pp 61-112.
2. Ramanujam, J.; Singh, U. P., Copper indium gallium selenide based solar cells – a review. Energy Environ. Sci. 2017, 10 (6), 1306-1319.
3. Regmi, G.; Ashok, A.; Chawla, P.; Semalti, P.; Velumani, S.; Sharma, S. N.; Castaneda, H., Perspectives of chalcopyrite-based CIGSe thin-film solar cell: a review. Journal of Materials Science: Materials in Electronics 2020, 31 (10), 7286-7314.
4. Tu, L.-H.; Cai, C.-H.; Lai, C.-H., Tuning Ga Grading in Selenized Cu(In,Ga)Se2 Solar Cells by Formation of Ordered Vacancy Compound. Solar RRL 2021, 5 (3), 2000626.
5. Nakamura, M.; Yamaguchi, K.; Kimoto, Y.; Yasaki, Y.; Kato, T.; Sugimoto, H., Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE J. Photovoltaics 2019, 9 (6), 1863-1867.
6. Wang, G.; Cheng, G.; Hu, B.; Wang, X.; Wan, S.; Wu, S.; Du, Z., Preparation of CuIn(SxSe1–x)2 thin films with tunable band gap by controlling sulfurization temperature of CuInSe2. J. Mater. Res. 2010, 25 (12), 2426-2429.
7. Beres, M.; Yu, K. M.; Syzdek, J.; Mao, S. S., Improvement in the electronic quality of pulsed laser deposited CuIn0.7Ga0.3Se2 thin films via post-deposition elemental sulfur annealing process. Thin Solid Films 2016, 608, 50-56.
8. Mueller, B. J.; Zimmermann, C.; Haug, V.; Hergert, F.; Koehler, T.; Zweigart, S.; Herr, U., Influence of different sulfur to selenium ratios on the structural and electronic properties of Cu(In,Ga)(S,Se)2 thin films and solar cells formed by the stacked elemental layer process. J. Appl. Phys. 2014, 116 (17), 174503.
9. Kato, T., Cu(In,Ga)(Se,S)2solar cell research in Solar Frontier: Progress and current status. Jpn. J. Appl. Phys. 2017, 56 (4S).
10. Hanna, G.; Jasenek, A.; Rau, U.; Schock, H. W., Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2. Thin Solid Films 2001, 387 (1), 71-73.
11. Maeda, T.; Nakanishi, R.; Yanagita, M.; Wada, T., Control of electronic structure in Cu(In, Ga)(S, Se)2for high-efficiency solar cells. Jpn. J. Appl. Phys. 2020, 59 (SG).
12. Kobayashi, T.; Yamaguchi, H.; Jehl Li Kao, Z.; Sugimoto, H.; Kato, T.; Hakuma, H.; Nakada, T., Impacts of surface sulfurization on Cu(In1−x,Gax)Se2 thin-film solar cells. Prog. Photovoltaics Res. Appl. 2015, 23 (10), 1367-1374.
13. Jehl Li Kao, Z.; Kobayashi, T.; Nakada, T., Modeling of the surface sulfurization of CIGSe-based solar cells. Sol. Energy 2014, 110, 50-55.
14. Turcu, M.; Kötschau, I. M.; Rau, U., Composition dependence of defect energies and band alignments in the Cu(In1−xGax)(Se1−ySy)2 alloy system. J. Appl. Phys. 2002, 91 (3), 1391-1399.
15. Ohashi, D.; Nakada, T.; Kunioka, A., Improved CIGS thin-film solar cells by surface sulfurization using In2S3 and sulfur vapor. Sol. Energy Mater. Sol. Cells 2001, 67 (1), 261-265.
16. Knecht, R.; Hammer, M. S.; Parisi, J.; Riedel, I., Impact of varied sulfur incorporation on the device performance of sequentially processed Cu(In,Ga)(Se,S)2 thin film solar cells. physica status solidi (a) 2013, 210 (7), 1392-1399.
17. Rau, U.; Schmitt, M.; Engelhardt, F.; Seifert, O.; Parisi, J.; Riedl, W.; Rimmasch, J.; Karg, F., Impact of Na and S incorporation on the electronic transport mechanisms of Cu(In, Ga)Se2 solar cells. Solid State Commun. 1998, 107 (2), 59-63.
18. Probst, V.; Stetter, W.; Riedl, W.; Vogt, H.; Wendl, M.; Calwer, H.; Zweigart, S.; Ufert, K. D.; Freienstein, B.; Cerva, H.; Karg, F. H., Rapid CIS-process for high efficiency PV-modules: development towards large area processing. Thin Solid Films 2001, 387 (1), 262-267.
19. Nakada, T.; Yamada, K.; Arai, R.; Ishizaki, H.; Yamada, N., Novel Wide-Band-Gap Ag(In1-xGax)Se2 Thin Film Solar Cells. MRS Proceedings 2005, 865, F11.1.
20. Kim, K.; Ahn, S. K.; Choi, J. H.; Yoo, J.; Eo, Y.-J.; Cho, J.-S.; Cho, A.; Gwak, J.; Song, S.; Cho, D.-H.; Chung, Y.-D.; Yun, J. H., Highly efficient Ag-alloyed Cu(In,Ga)Se2 solar cells with wide bandgaps and their application to chalcopyrite-based tandem solar cells. Nano Energy 2018, 48, 345-352.
21. Hanket, G. M.; Thompson, C. P.; Larsen, J. K.; Eser, E.; Shafarman, W. N., Control of Ga profiles in (AgCu)(InGa)Se2 absorber layers deposited on polyimide substrates. In 2012 38th IEEE Photovoltaic Specialists Conference, 2012; pp 000662-000667.
22. Kim, K.; Park, J. W.; Yoo, J. S.; Cho, J.-s.; Lee, H.-D.; Yun, J. H., Ag incorporation in low-temperature grown Cu(In,Ga)Se2 solar cells using Ag precursor layers. Sol. Energy Mater. Sol. Cells 2016, 146, 114-120.
23. Yang, S.-C.; Sastre, J.; Krause, M.; Sun, X.; Hertwig, R.; Ochoa, M.; Tiwari, A. N.; Carron, R., Silver-Promoted High-Performance (Ag,Cu)(In,Ga)Se2 Thin-Film Solar Cells Grown at Very Low Temperature. Solar RRL 2021, 5 (5), 2100108.
24. Keller, J.; Sopiha, K. V.; Stolt, O.; Stolt, L.; Persson, C.; Scragg, J. J. S.; Törndahl, T.; Edoff, M., Wide-gap (Ag,Cu)(In,Ga)Se2 solar cells with different buffer materials—A path to a better heterojunction. Prog. Photovoltaics Res. Appl. 2020, 28 (4), 237-250.
25. Boyle, J. H.; McCandless, B. E.; Shafarman, W. N.; Birkmire, R. W., Structural and optical properties of (Ag,Cu)(In,Ga)Se2 polycrystalline thin film alloys. J. Appl. Phys. 2014, 115 (22), 223504.
26. Thompson, C. P.; Chen, L.; Shafarman, W. N.; Lee, J.; Fields, S.; Birkmire, R. W. In Bandgap gradients in (Ag,Cu)(In,Ga)Se2 thin film solar cells deposited by three-stage co-evaporation, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 14-19 June 2015; 2015; pp 1-6.
27. Donzel‐Gargand, O.; Larsson, F.; Törndahl, T.; Stolt, L.; Edoff, M., Secondary phase formation and surface modification from a high dose KF‐post deposition treatment of (Ag, Cu)(In, Ga) Se2 solar cell absorbers. Prog. Photovoltaics Res. Appl. 2019, 27 (3), 220-228.
28. Larsson, F.; Donzel-Gargand, O.; Keller, J.; Edoff, M.; Törndahl, T., Atomic layer deposition of Zn (O, S) buffer layers for Cu (In, Ga) Se2 solar cells with KF post-deposition treatment. Sol. Energy Mater. Sol. Cells 2018, 183, 8-15.
29. Feurer, T.; Fu, F.; Weiss, T. P.; Avancini, E.; Löckinger, J.; Buecheler, S.; Tiwari, A. N., RbF post deposition treatment for narrow bandgap Cu (In, Ga) Se2 solar cells. Thin Solid Films 2019, 670, 34-40.
30. Martin, N. M.; Törndahl, T.; Wallin, E.; Simonov, K. A.; Rensmo, H.; Platzer-Björkman, C., Surface/Interface Effects by Alkali Postdeposition Treatments of (Ag,Cu)(In,Ga)Se2 Thin Film Solar Cells. ACS Appl. Energy Mater. 2022, 5 (1), 461-468.
31. Soltanmohammad, S.; Chen, L.; McCandless, B. E.; Shafarman, W. N., Phase stability in Ag-Cu-In-Ga metal precursors for (Ag, Cu)(In, Ga) Se2 thin films. Sol. Energy Mater. Sol. Cells 2017, 172, 347-352.
32. Quadir, S.; Qorbani, M.; Lai, Y.-R.; Sabbah, A.; Thong, H. T.; Hayashi, M.; Chen, C. Y.; Chen, K. H.; Chen, L. C., Impact of Cation Substitution in (AgxCu1− x) 2ZnSnSe4 Absorber‐Based Solar Cells toward 10% Efficiency: Experimental and Theoretical Analyses. Solar RRL 2021, 5 (10), 2100441.
33. Liu, X.; Liu, Z.; Meng, F.; Sugiyama, M., Improvement of Cu(In,Ga)Se2 thin film solar cells by surface sulfurization using ditertiarybutylsulfide. Sol. Energy Mater. Sol. Cells 2014, 124, 227-231.
34. Pakiari, A. H.; Jamshidi, Z., Nature and Strength of M−S Bonds (M = Au, Ag, and Cu) in Binary Alloy Gold Clusters. The Journal of Physical Chemistry A 2010, 114 (34), 9212-9221.
35. Peraldo Bicelli, L., Thermodynamic stability of silver indium selenide (n-AgInSe2) in photoelectrochemical cells. The Journal of Physical Chemistry 1988, 92 (24), 6991-6997.
36. Nishimura, T.; Nakada, K.; Yamada, A., Examination of a Cu-Deficient Layer on Cu(In, Ga)Se2 Films Fabricated by a Three-Stage Process for Highly Efficient Solar Cells. ACS Appl. Energy Mater. 2019, 2 (7), 5103-5108.
37. Keller, J.; Stolt, L.; Sopiha, K. V.; Larsen, J. K.; Riekehr, L.; Edoff, M., On the Paramount Role of Absorber Stoichiometry in (Ag,Cu)(In,Ga)Se
2
Wide‐Gap Solar Cells. Solar RRL 2020, 4 (12).
38. Zhang, S.; Wei, S.-H.; Zunger, A.; Katayama-Yoshida, H., Defect physics of the CuInSe 2 chalcopyrite semiconductor. Physical Review B 1998, 57 (16), 9642.
(此全文20250828後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *