|
[1] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature., 354(6348), p. 56-58. [2] 陳亞群(2007)。多壁奈米碳管填充之導電高分子材料電磁波屏蔽效能研究。國立清華大學材料科學與工程研究所碩士論文。 [3] 張雅筑(2007)。常壓下以電暈方式製備奈米碳管或奈米結構。國立清華大學材料科學與工程研究所碩士論文。 [4] 李惠菁(2008)。多壁奈米碳管/聚乙烯醇之合成與其物理性質研究。國立清華大學材料科學與工程研究所碩士論文。 [5] Smalley, R.E., Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. (2003). Carbon nanotubes: synthesis, structure, properties, and applications. Springer Science & Business Media., Vol. 80. [6] Odom, T.W., et al. (2000). Structure and Electronic Properties of Carbon Nanotubes. The Journal of Physical Chemistry B. 104(13): p. 2794-2809 [7] Dresselhaus, M.S., et al. (2000). Carbon Nanotubes, in The Physics of Fullerene-Based and Fullerene-Related Materials. Springer Netherlands: Dordrecht. p. 331-379. [8] Saito, R., et al. (1992). Electronic structure of chiral graphene tubules. Applied Physics Letters. 60(18): p. 2204-2206. [9] E. T. Thostenson, Z. Ten, T. W. Chou. (2001). Compos. Sci. Technol., 61, 1899. [10] Dresselhaus,M. and P. Eklund, phonons in carbon nanotubes. Advances in Physics, 2000.49(6): p. 705-814 [11] Y. H. Yang, W.Z. Li, Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy, Applied Physics Letters 98(4) (2004) [12] Saito, R., Dresselhaus, G. & Dresselhaus, M. S. (1988). Physical properties of carbon nanotubes. World scientific. [13] Dresselhaus, M.S., Dresselhaus, G. & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: their properties and applications. Academic press. [14] Dresselhaus, M.S. and P.C. Eklund. (2000). Phonons in carbon nanotubes. Advances in Physics. 49(6): p. 705-814. [15] Hamada, N., S. Sawada, and A. Oshiyama. (1992). New one-dimensional conductors: Graphitic microtubules. Physical Review Letters. 68(10): p. 1579-1581. [16] Dresselhaus, M.S., G. Dresselhaus, and A. Jorio. (2004) UNUSUAL PROPERTIES AND STRUCTURE OF CARBON NANOTUBES. Annual Review of Materials Research. 34(1): p. 247-278. [17] Dai, H. (2002). Carbon nanotubes: opportunities and challenges. Surface Science. 500(1): p. 218-241. [18] 李慶常,王美玲. 《數字電子技術基礎》. 機械工業出版社, 北京. 2009. ISBN 978-7-111-04154-2. [19] Riverglennapts.com/ https://riverglennapts.com/ja/diode/310-diode-resistance.html [20] Wikipedia https://zh.wikipedia.org/wiki/File:PnJunction-Diode-ForwardBias.PNG [21] Wikipedia https://zh.wikipedia.org/wiki/File:PnJunction-Diode-ReverseBias.PNG [22] I. Langmuir. (1928). Proceedings of the National Academy of Sciences of the United States of America. 14. [23] Alfred Grill. (1994). Cold plasma in materials fabrication. IEEE. New York. [24] M. I. Boulos, P. Fauchais, and E. Pfender. Thermal plasmas : fundamentals and applications. [25] van der Pauw, L. J., A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. 1958. [26] van der Pauw電阻率量測實驗. [27] 霍爾效應及鍺晶體的導電載子的密度 [28] Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction Ta-JenLia1Min-HsinYehab1Wei-HungChiangbYan-ShengLibGuan-LinChenbYow-AnLeuacTa-ChangTiendShen-ChuanLodLu-YinLineJiang-JenLincKuo-ChuanHoac [29] L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen. (1996). Phys. Rev. Lett., 76, 971. [30] A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus and M. S. Dresselhaus. (2003). New Journal of Physics, 5 139,1 139,17. [31] X射線光電子能譜儀https://highscope.ch.ntu.edu.tw/wordpress/?p=72999 [32] Luoow.com https://www.luoow.com/dc_tw/100671438 [33] https://zh.wikipedia.org/zh-tw/紫外線電子能譜學 [34] Yanjing Liu, Jiawei He, Bing Zhang, Huacheng Zhu, Yang Yang, Li Wu, Wencong Zhang, Yanping Zhou and Kama Huanga. (2021). A self-boosting microwave plasma strategy tuned by air pressure for the highly efficient and controllable surface modification of carbon, RSC Adv.,11, 9955-9963. [35] M.A. Montes-Morán, D. Suárez, J.A. Menéndez, E. Fuente. (2004). On the nature of basic sites on carbon surfaces: an overview. Carbon, 42 (7), pp. 1219-1225. [36] S. Kabir, K. Artyushkova, A. Serov, B. Kiefer, P. Atanassov. (2016). Surf. Interface Anal., 48, pp. 293-300. [37] Chieh-Tsung Lo, Keng-Wei Lin, Tzu-Pei Wang, Sheng-Min Huang, Chien-Liang Lee. (2021). Differentiating between the effects of nitrogen plasma and hydrothermal treatment on electrospun carbon fibers used as supercapacitor electrodes. Electrochimica Acta, Volume 381,138255. [38] Yuxin Li and Ashley E. Ross. (2020). Plasma-treated carbon-fiber microelectrodes for improved purine detection with fast-scan cyclic voltammetry. Analyst, 145, 805-815. [39] G.A. Somorjai, Introduction to Surface Chemistry and Catalysis, John Wiley & Sons, New York, 1994 [40] Work function modifications of graphite surface via oxygen plasma treatmentJ. Duch a,∗, P. Kubisiak a, K.H. Adolfsson b, M. Hakkarainen b, M. Golda-Cepa a, A. Kotarba, Applied Surface Science 419 (2017) 439–4 [41] C. D. Wang, M. F. Yuen, T. W. Ng, S. K. Jha, Z. Z. Lu, S. Y. Kwok, T. L. Wong, X. Yang, C. S. Lee, S. T. Lee, and W. J. Zhang, Appl. Phys. Lett. 100, 253107 (2012). [42] Tuning the work function of graphene by nitrogen plasma treatment with different radio-frequency powers. (2014). Applied Physics Letters, 104(23), 233103. doi:10.1063/1.4882159 [43] Boron-Doped Graphite for High Work Function Carbon Electrode in Printable Hole-Conductor-Free Mesoscopic Perovskite Solar Cells Miao Duan,† Chengbo Tian,† Yue Hu, Anyi Mei, Yaoguang Rong, Yuli Xiong, Mi Xu, Yusong Sheng, Pei Jiang, Xiaomeng Hou, Xiaotong Zhu, Fei Qin, and Hongwei Han [44] 許景棟,奈米碳管的聲子,吸附性質與其新穎的合成技術,材料科學與工程研究 所,2008,國立清華大學:新竹 [45] M. Xue, S. Peng, F. Wang, J. Ou, C. Li, W. Li, Linear relation between surface roughness and work function of light alloys, J. Alloys Compd. 692 (2017) 903–907, http://dx.doi.org/10.1016/j.jallcom.2
|