|
1. 劉火欽, 金屬材料學. 1991: 金屬材料學. 2. 賴耿陽, 模具製造技術. 2001: 復漢出版社. 3. Xu, S., et al., Effect of Ag addition on the microstructure and mechanical properties of Cu-Cr alloy. Materials Science and Engineering: A, 2018. 726: p. 208-214. 4. Correia, J.B., H.A. Davies, and C.M. Sellars, Strengthening in rapidly solidified age hardened CuCr and CuCrZr alloys. Acta Materialia, 1997. 45(1): p. 177-190. 5. Batra, I.S., et al., Microstructure and properties of a Cu–Cr–Zr alloy. Journal of Nuclear Materials, 2001. 299(2): p. 91-100. 6. Schuler, C.R., et al., Process‐related risk of beryllium sensitization and disease in a copper–beryllium alloy facility. American journal of industrial medicine, 2005. 47(3): p. 195-205. 7. Committee, A.I.H., Properties and selection: nonferrous alloys and special-purpose materials. ASM International, 1992. 2: p. 1143-1144. 8. Kuhn, H., et al., Properties of high performance alloys for electromechanical connectors. Copper Alloys—Early Applications and Current Performance—Enhancing Processes, 2012: p. 52-68. 9. 林瑋翔, 耐磨耗新型銅合金之開發. 國立清華大學博碩士論文, 2019. 10. Zhang, X., et al., Review of nano-phase effects in high strength and conductivity copper alloys. Nanotechnology Reviews, 2019. 8(1): p. 383-395. 11. Peng, L.J., et al., Microstructure and Properties of Cu-Cr-Zr-Ag Alloy. Materials Science Forum, 2019. 941: p. 1613-1617. 12. Wu, Y., et al., Correlations between microstructures and properties of Cu-Ni-Si-Cr alloy. Materials Science and Engineering: A, 2018. 731: p. 403-412. 13. Wang, W., et al., Influence of Cryorolling on the Precipitation of Cu–Ni–Si Alloys: An In Situ X-ray Diffraction Study. Acta Metallurgica Sinica (English Letters), 2018. 31(10): p. 1089-1097. 14. Zou, C., et al., A nano-micro dual-scale particulate-reinforced copper matrix composite with high strength, high electrical conductivity and superior wear resistance. RSC Advances, 2018. 8(54): p. 30777-30782. 15. Bera, S., W. Lojkowsky, and I. Manna, Development of Wear-Resistant Cu-10Cr-3Ag Electrical Contacts with Nano-Al2O3 Dispersion by Mechanical Alloying and High Pressure Sintering. Metallurgical and Materials Transactions A, 2009. 40(13): p. 3276. 16. Wen, H., et al., Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Materialia, 2013. 61(8): p. 2769-2782. 17. Courtney, T.H., Mechanical behavior of materials. 2005: Waveland Press. 18. Booth-Morrison, C., D.C. Dunand, and D.N. Seidman, Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Materialia, 2011. 59(18): p. 7029-7042. 19. He, J.Y., et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 2016. 102: p. 187-196. 20. Ardell, A.J., Precipitation hardening. Metallurgical Transactions A, 1985. 16(12): p. 2131-2165. 21. Nembach, E., Particle strengthening of metals and alloys. 1997. 22. Basinski, S. and Z. Basinski, Dislocations in solids. Plastic Deformation and Work Hardening, North-Holland, Amsterdam, 1979: p. 261-362. 23. Tenkamp, J., et al. Influence of the microstructure on the cyclic stress-strain behaviour and fatigue life in hypo-eutectic Al-Si-Mg cast alloys. in MATEC Web of Conferences. 2018. EDP Sciences. 24. Botcharova, E., J. Freudenberger, and L. Schultz, Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu–Nb alloys. Acta Materialia, 2006. 54(12): p. 3333-3341. 25. Tian, L., et al., Modeling the electrical resistivity of deformation processed metal–metal composites. Acta Materialia, 2014. 77: p. 151-161. 26. Li, Y., et al., Microstructure and properties of a novel Cu-Mg-Ca alloy with high strength and high electrical conductivity. Journal of Alloys and Compounds, 2017. 723: p. 1162-1170. 27. Morris, M.A., M. Leboeuf, and D.G. Morris, Recrystallization mechanisms in a CuCrZr alloy with a bimodal distribution of particles. Materials Science and Engineering: A, 1994. 188(1): p. 255-265. 28. Ghosh, G., J. Miyake, and M. Fine, The systems-based design of high-strength, high-conductivity alloys. Jom, 1997. 49(3): p. 56-60. 29. Chakrabarti, D.J., D.E. Laughlin, and L.E. Tanner, The Be−Cu (Beryllium-Copper) system. Bulletin of Alloy Phase Diagrams, 1987. 8(3): p. 269-282. 30. Rioja, R.J. and D.E. Laughlin, The sequence of precipitation in Cu-2w/0 Be alloys. Acta Metallurgica, 1980. 28(9): p. 1301-1313. 31. Koo, Y.M. and J.B. Cohen, The structure of GP zones in Cu-10.9 at.% Be. Acta Metallurgica, 1989. 37(5): p. 1295-1306. 32. Guoliang, X., et al., The precipitation behavior and strengthening of a Cu–2.0wt% Be alloy. Materials Science and Engineering: A, 2012. 558: p. 326-330. 33. Lei, Q., et al., Effect of aluminum on microstructure and property of Cu–Ni–Si alloys. Materials Science and Engineering: A, 2013. 572: p. 65-74. 34. Li, J., et al., Effect of Ni/Si Mass Ratio and Thermomechanical Treatment on the Microstructure and Properties of Cu-Ni-Si Alloys. Materials, 2019. 12(13): p. 2076. 35. Lei, Q., et al., Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes. Journal of Alloys and Compounds, 2017. 695: p. 2413-2423. 36. Pan, Z., et al., Progress of study of super-high strength Cu-Ni-Si alloy. Heat Treat. Met., 2007. 7: p. 55-59. 37. Lei, Q., et al., Phase transformations behavior in a Cu–8.0 Ni–1.8 Si alloy. Journal of alloys and compounds, 2011. 509(8): p. 3617-3622. 38. Li, J., et al., Relationship between the microstructure and properties of a peak aged Cu–Ni–Co–Si alloy. Materials Science and Technology, 2019. 35(5): p. 606-614. 39. Grylls, R.J., C.D.S. Tuck, and M.H. Loretto, Identification of orthorhombic phase in a high-strength cupronickel. Scripta Materialia, 1996. 34(1): p. 121-126. 40. Lei, Q., et al., A new ultrahigh strength Cu–Ni–Si alloy. Intermetallics, 2013. 42: p. 77-84. 41. Lee, E., et al., Effect of Ti addition on tensile properties of Cu-Ni-Si alloys. Metals and Materials International, 2011. 17(4): p. 569-576. 42. Lei, Q., et al., Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy. Materials Science and Engineering: A, 2017. 697: p. 37-47. 43. Pan, Z.-Y., et al., Thermomechanical treatment of super high strength Cu-8.0 Ni-1.8 Si alloy. Transactions of Nonferrous Metals Society of China, 2007. 17(s1B): p. s1076-s1080. 44. Lei, Q., et al., The evolution of microstructure in Cu–8.0Ni–1.8Si–0.15Mg alloy during aging. Materials Science and Engineering: A, 2010. 527(24-25): p. 6728-6733. 45. Cao, Y., et al., Effect of inclusion on strength and conductivity of Cu-Ni-Si alloys with discontinuous precipitation. Journal of Alloys and Compounds, 2020. 843: p. 156006. 46. Sokolovskaya, E.M., et al., Izv. Akad. Nauk SSSR, Met., 1973. 6: p. 114-119. 47. Zhang, J., et al., Disintegration of the net-shaped grain-boundary phase by multi-directional forging and its influence on the microstructure and properties of Cu–Ni–Si alloy. Materials Research Express, 2017. 4(9): p. 096511. 48. Wang, H.-S., et al., Improvement in strength and thermal conductivity of powder metallurgy produced Cu–Ni–Si–Cr alloy by adjusting Ni/Si weight ratio and hot forging. Journal of Alloys and Compounds, 2015. 633: p. 59-64. 49. Rdzawski, Z. and J. Stobrawa, Thermomechanical processing of Cu–Ni–Si–Cr–Mg alloy. Materials Science and Technology (United Kingdom), 1993. 9(2): p. 142-150. 50. Cheng, J.Y., et al., Evaluation of nanoscaled precipitates in a Cu–Ni–Si–Cr alloy during aging. Journal of Alloys and Compounds, 2014. 614: p. 189-195. 51. Zhao, Q., et al., Comparison of hot deformation behaviour and microstructural evolution for Ti-5Al-5V-5Mo-3Cr alloys prepared by powder metallurgy and ingot metallurgy approaches. Materials & Design, 2019. 169: p. 107682. 52. Ban, Y., et al., EBSD analysis of hot deformation behavior of Cu-Ni-Co-Si-Cr alloy. Materials Characterization, 2020. 169: p. 110656. 53. Humphreys, F. and M. Hatherly, Chapter 13-hot deformation and dynamic restoration. Recrystallization and related annealing phenomena, 2004: p. 415-450. 54. Xie, B., et al., DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures. Journal of Alloys and Compounds, 2019. 803: p. 16-29. 55. Humphreys, F.J. and M. Hatherly, Chapter 14 - Continuous Recrystallization During and after Large Strain Deformation, in Recrystallization and Related Annealing Phenomena (Second Edition), F.J. Humphreys and M. Hatherly, Editors. 2004, Elsevier: Oxford. p. 451-467. 56. Wu, Y., et al., Dynamic recrystallization and texture evolution of Ti-22Al-25Nb alloy during plane-strain compression. Journal of Alloys and Compounds, 2018. 749: p. 844-852. 57. Guo-Zheng, Q., Characterization for dynamic recrystallization kinetics based on stress-strain curves. Recent developments in the study of recrystallization, 2013: p. 61-64. 58. Mirzadeh, H. and M.H. Parsa, Hot deformation and dynamic recrystallization of NiTi intermetallic compound. Journal of Alloys and Compounds, 2014. 614: p. 56-59. 59. Yanagida, A. and J. Yanagimoto, A novel approach to determine the kinetics for dynamic recrystallization by using the flow curve. Journal of Materials Processing Technology, 2004. 151(1): p. 33-38. 60. Zhang, L., et al., Hot deformation behavior of Cu–8.0Ni–1.8Si–0.15Mg alloy. Materials Science and Engineering: A, 2011. 528(3): p. 1641-1647. 61. Wang, W., et al., Constitutive analysis and dynamic recrystallization behavior of as-cast 40CrNiMo alloy steel during isothermal compression. Journal of Materials Research and Technology, 2020. 9(2): p. 1929-1940. 62. Ryan, N. and H. McQueen, Strain rate and temperature dependence of hot strength in 301, 304, 316 and 317 steels in as-cast and worked conditions. Stainless Steels'87, 1987: p. 498-507. 63. McQueen, H.J. and N. Ryan, Constitutive analysis in hot working. Materials Science and Engineering: A, 2002. 322(1-2): p. 43-63. 64. Mohamadizadeh, A., A. Zarei-Hanzaki, and H.R. Abedi, Modified constitutive analysis and activation energy evolution of a low-density steel considering the effects of deformation parameters. Mechanics of Materials, 2016. 95: p. 60-70. 65. Shamsolhodaei, A., et al., The high temperature flow behavior modeling of NiTi shape memory alloy employing phenomenological and physical based constitutive models: A comparative study. Intermetallics, 2014. 53: p. 140-149. 66. Prasad, Y. and K. Rao, Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300–950 C. Materials Science and Engineering: A, 2005. 391(1-2): p. 141-150. 67. Marandi, A., et al., The prediction of hot deformation behavior in Fe–21Mn–2.5 Si–1.5 Al transformation-twinning induced plasticity steel. Materials Science and Engineering: A, 2012. 554: p. 72-78. 68. Cai, J., et al., Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain. Materials & Design, 2011. 32(3): p. 1144-1151. 69. Wang, H., et al., Constitutive modelling for strain–hardening alloys during isothermal compression: An efficient semi-empirical method coupling the effects of strain, temperature and strain-rate. Materials Today Communications, 2020. 24: p. 101040. 70. Li, X., et al., The hot deformation behavior, microstructure evolution and texture types of as-cast Mg–Li alloy. Journal of Alloys and Compounds, 2020. 831: p. 154868. 71. Liu, J., et al., Hot deformation and dynamic recrystallization behavior of Cu-3Ti-3Ni-0.5Si alloy. Journal of Alloys and Compounds, 2019. 782: p. 224-234. 72. Satheesh Kumar, S., et al., Constitutive modeling for predicting peak stress characteristics during hot deformation of hot isostatically processed nickel-base superalloy. Journal of materials science, 2015. 50(19): p. 6444-6456. 73. Mirzadeh, H., J.M. Cabrera, and A. Najafizadeh, Modeling and Prediction of Hot Deformation Flow Curves. Metallurgical and Materials Transactions A, 2012. 43(1): p. 108-123. 74. Duan, Y., et al., Developed constitutive models, processing maps and microstructural evolution of Pb-Mg-10Al-0.5 B alloy. Materials Characterization, 2017. 129: p. 353-366. 75. Prasad, Y., et al., Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metallurgical Transactions A, 1984. 15(10): p. 1883-1892. 76. Li, J., F. Li, and Y. An, Characterization of Hot Deformation Behavior for Pure Aluminum Using 3D Processing Maps. High Temperature Materials and Processes, 2018. 37(9-10): p. 929-942. 77. Sarkar, J., Y. Prasad, and M. Surappa, Optimization of hot workability of an Al-Mg-Si alloy using processing maps. Journal of materials science, 1995. 30(11): p. 2843-2848. 78. Gegel, H., J. Malas, and S. Doraivelu, Process modeling of p/m extrusion, in Innovations in Materials Processing. 1985, Springer. p. 137-159. 79. Fu, H., J. Li, and X. Yun, Role of solidification texture on hot deformation behavior of a Cu–Ni–Si alloy with columnar grains. Materials Science and Engineering: A, 2021. 824: p. 141862. 80. Zhang, J., et al., Hot deformation behavior of Ti-15-3 titanium alloy: a study using processing maps, activation energy map, and Zener–Hollomon parameter map. Journal of Materials Science, 2012. 47(9): p. 4000-4011. 81. Sun, Y., et al., Characterization of hot processing parameters of powder metallurgy TiAl-based alloy based on the activation energy map and processing map. Materials & Design, 2015. 86: p. 922-932. 82. Hutchings, I. and P. Shipway, Tribology: friction and wear of engineering materials. 2017: Butterworth-Heinemann. 83. Evans, A., Wear mechanisms in ceramics. Fundamentals Friction and Wear of Materials, 1981. 84. Bhushan, B., Principles and applications of tribology. 1999: John Wiley & Sons. 85. Lin, S.-J. and K.-S. Liu, Effect of aging on abrasion rate in an AlZnMgSiC composite. Wear, 1988. 121(1): p. 1-14. 86. Flores, P., Modeling and simulation of wear in revolute clearance joints in multibody systems. Mechanism and Machine Theory, 2009. 44(6): p. 1211-1222. 87. Tjong, S.C., Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Materials Science and Engineering: R: Reports, 2013. 74(10): p. 281-350. 88. Stott, F., The role of oxidation in the wear of alloys. Tribology International, 1998. 31(1-3): p. 61-71. 89. Johnson, K.L., K. Kendall, and a. Roberts, Surface energy and the contact of elastic solids. Proceedings of the royal society of London. A. mathematical and physical sciences, 1971. 324(1558): p. 301-313. 90. Zhou, Y.-H., M. Harmelin, and J. Bigot, Sintering behaviour of ultra-fine Fe, Ni and Fe-25wt% Ni powders. Scripta metallurgica, 1989. 23(8): p. 1391-1396. 91. Takeuchi, A. and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 2005. 46(12): p. 2817-2829.
|