帳號:guest(18.188.226.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):侯柏宇
作者(外文):Hou, Po-Yu
論文名稱(中文):探討微量元素對 Cu-Ni-Si 合金之微結構與磨耗性質影響
論文名稱(外文):Study on Microstructure and Wear Properties of Cu-Ni-Si System with Multi-Addition elements
指導教授(中文):蔡哲瑋
指導教授(外文):Tsai, Che-Wei
口試委員(中文):葉均蔚
曾有志
口試委員(外文):Yeh, Jien-Wei
Tzeng, Yu-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:109031567
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:123
中文關鍵詞:銅合金熱機處理加工圖磨耗阻抗
外文關鍵詞:Copper alloyThermomechanical processingProcessing mapwear resistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:47
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
銅合金高導電與耐磨的特性,應用於電子工業與機械製造業,其中銅鈹合金使用最多,但鈹元素高成本與具毒性,故材料設計與使用仍受限制。近年著重發展CuNiSi 合金,此系統具良好強度與導電度。大多研究以低鎳矽銅合金研究,較少有高含量鎳矽之研究,在此類銅合金常見介金屬物,影響合金強度與加工之機械性質。
因此,本研究高鎳矽之CuNiSiCrFeSn 合金系統,分別透過熱機處理、室溫高溫性質分析及成份調質深入研究。探討導電銅合金之熱機製程,對其微結構與磨耗性質的影響。研究均質化溫度熱處理對微結構影響,並以700°C 、750°C、800°C、850°C、900°C下之高溫壓縮實驗,研究CuNiSiCrFeSn合金於高溫加工之流變應力曲線。透過分析計算,探討本研究合金之預測組合方程式、活化能圖及熱加工圖。研究結果顯示高鎳矽之CuNiSiCrFeSn合金,具有連續介金屬相,室溫拉伸分析結果顯示合金為脆性破斷特徵,YS 314 MPa、UTS 530 MPa及伸長率 11%。
為提升其加工性與兼顧強度,研究調整鎳矽含量並微量添加Ti,設計兩款無介金屬之單相CuNiSiFeSnTi 合金,其均質化處理,拉伸伸長率分別是 22% 及 17%。探討熱機處理,450°C 及 500°C 時效溫度對析出強化影響,比較鎳矽添加量對時效軟化之現象。綜合比較本研究結果顯示,高鎳矽CuNiSiCrFeSn 合金最佳之時效熱處理具有硬度314 HV 與導電率22.2 %IACS;經過調質改良之兩款CuNiSiFeSnTi合金,最佳尖峰時效,其硬度與導電率分別可達 253 HV 及 25.9 %IACS以及325 HV 及 22.5 %IACS。以室溫黏著磨耗及高溫250°C黏著磨耗測試,將本研究開發之上述合金與 C17200 商用銅鈹合金比較,模擬實際材料使用壽命。結果顯示,室溫下CuNiSiFeSnTi合金,因磨屑細小且圓滑,摩擦係數下降,故提升磨耗阻抗為 C17200 之1371%。高溫磨耗時,合金表面形成之保護層,提升高溫磨耗性質,阻抗為 C17200 之359%。
Copper alloys have high electrical conductivity and wear resistance, and are used in the electronics and machinery manufacturing industry. The beryllium copper alloys are used the most widely. Beryllium elements are expensive and toxic, so the applctions are still limited for material design. In recent years, the research of CuNiSi alloy is the main system because of high strength and electrical conductivity. However, most alloys are low-nickel-silicon-copper alloys. In this system, intermetallics affect the strength of the alloy and the mechanical properties of processing, but few of high-content nickel-silicon alloys are stuied.
Therefore, in this study, the CuNiSiCrFeSn alloy with high nickel and silicon was researched with thermal-mechanical treatment, the mechanical and eletriacl properties are analized at room and elevated temperature, and the new alloys are designed. After thermomechanical process of the present alloys, the microstructure and wear properties are compared to C17200. The effect of homogenization temperature heat treatment on the microstructure was studied firstly, and the flow stress curve of CuNiSiCrFeSn alloy was studied by high temperature compression experiments at 700°C, 750°C, 800°C, 850°C, and 900°C. Through mathematical analysis and calculation, the predicted combination equations, activation energy maps and processing maps of the alloys are established. The high nickel-silicon CuNiSiCrFeSn alloy is shownn the continuous intermetallic phase, and characterized by brittle fracture, YS 314 MPa, UTS 530 MPa and elongation 11% after tensile test at room temperature.
To improve the workability and strength, the concentration of nickel and silicon are adjusted, and small amount of Ti are added. Two single-phase CuNiSiFeSnTi alloys without intermetallicare are designed. The elongation of as-homogenized state is the 22% and 17% respectively. The effects of aging temperatures on precipitation strengthening and the effect of Ni-Si addition on aging softening was studied at 450°C and 500°C.
The peak aged high nickel-silicon CuNiSiCrFeSn alloy has a hardness of 314 HV and a conductivity of 22.2 %IACS; the two CuNiSiFeSnTi alloys the hardness and conductivity achieve 253 HV 25.9 %IACS and 325 HV and 22.5 %IACS respectively.
Those alloys were estimated service life and compared to the C17200 commercial copper beryllium alloy by adhesive wear test at ambiemt temperature and at 250°C. Thewear resistance of CuNiSiFeSnTi alloy is 1371% higher than C17200, because the low friction coefficient contributes by a small and smooth wear debris at room temperature. The wear resistance is 359% higher than that of C17200 at high temperature wear, since the glazing layer formed on the surfaces increased wear resistance at the high temperature.
壹、前言 ...1
貳、文獻回顧...3
2-1 時效析出... 3
2-2 高強度高導電銅合金...7
2-3 CuNiSi銅合金系統...10
2-4 高溫 Gleeble 壓縮...25
2-5 乾式磨耗...40
參、研究方法...45
3-1 合金成份與實驗流程...46
3-2 真空電弧熔煉 (Vacuum arc melting, VAM)...48
3-3 熱機處理...48
3-4 微結構與晶體結構分析...49
3-5 機械性質與導電性質分析...50
肆、結果與討論...55
4-1 N7熱加工製程圖...55
4-2 新型銅合金設計...76
4-3 尖峰時效態磨耗分析...91
4-4 尖峰時效態之250°C高溫磨耗性質...100
4-5 尖峰時效態機械性質綜合比較...109
伍、結論...111
陸、本研究之貢獻...113
柒、未來研究方向...114
捌、參考文獻...115
1. 劉火欽, 金屬材料學. 1991: 金屬材料學.
2. 賴耿陽, 模具製造技術. 2001: 復漢出版社.
3. Xu, S., et al., Effect of Ag addition on the microstructure and mechanical properties of Cu-Cr alloy. Materials Science and Engineering: A, 2018. 726: p. 208-214.
4. Correia, J.B., H.A. Davies, and C.M. Sellars, Strengthening in rapidly solidified age hardened CuCr and CuCrZr alloys. Acta Materialia, 1997. 45(1): p. 177-190.
5. Batra, I.S., et al., Microstructure and properties of a Cu–Cr–Zr alloy. Journal of Nuclear Materials, 2001. 299(2): p. 91-100.
6. Schuler, C.R., et al., Process‐related risk of beryllium sensitization and disease in a copper–beryllium alloy facility. American journal of industrial medicine, 2005. 47(3): p. 195-205.
7. Committee, A.I.H., Properties and selection: nonferrous alloys and special-purpose materials. ASM International, 1992. 2: p. 1143-1144.
8. Kuhn, H., et al., Properties of high performance alloys for electromechanical connectors. Copper Alloys—Early Applications and Current Performance—Enhancing Processes, 2012: p. 52-68.
9. 林瑋翔, 耐磨耗新型銅合金之開發. 國立清華大學博碩士論文, 2019.
10. Zhang, X., et al., Review of nano-phase effects in high strength and conductivity copper alloys. Nanotechnology Reviews, 2019. 8(1): p. 383-395.
11. Peng, L.J., et al., Microstructure and Properties of Cu-Cr-Zr-Ag Alloy. Materials Science Forum, 2019. 941: p. 1613-1617.
12. Wu, Y., et al., Correlations between microstructures and properties of Cu-Ni-Si-Cr alloy. Materials Science and Engineering: A, 2018. 731: p. 403-412.
13. Wang, W., et al., Influence of Cryorolling on the Precipitation of Cu–Ni–Si Alloys: An In Situ X-ray Diffraction Study. Acta Metallurgica Sinica (English Letters), 2018. 31(10): p. 1089-1097.
14. Zou, C., et al., A nano-micro dual-scale particulate-reinforced copper matrix composite with high strength, high electrical conductivity and superior wear resistance. RSC Advances, 2018. 8(54): p. 30777-30782.
15. Bera, S., W. Lojkowsky, and I. Manna, Development of Wear-Resistant Cu-10Cr-3Ag Electrical Contacts with Nano-Al2O3 Dispersion by Mechanical Alloying and High Pressure Sintering. Metallurgical and Materials Transactions A, 2009. 40(13): p. 3276.
16. Wen, H., et al., Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Materialia, 2013. 61(8): p. 2769-2782.
17. Courtney, T.H., Mechanical behavior of materials. 2005: Waveland Press.
18. Booth-Morrison, C., D.C. Dunand, and D.N. Seidman, Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Materialia, 2011. 59(18): p. 7029-7042.
19. He, J.Y., et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 2016. 102: p. 187-196.
20. Ardell, A.J., Precipitation hardening. Metallurgical Transactions A, 1985. 16(12): p. 2131-2165.
21. Nembach, E., Particle strengthening of metals and alloys. 1997.
22. Basinski, S. and Z. Basinski, Dislocations in solids. Plastic Deformation and Work Hardening, North-Holland, Amsterdam, 1979: p. 261-362.
23. Tenkamp, J., et al. Influence of the microstructure on the cyclic stress-strain behaviour and fatigue life in hypo-eutectic Al-Si-Mg cast alloys. in MATEC Web of Conferences. 2018. EDP Sciences.
24. Botcharova, E., J. Freudenberger, and L. Schultz, Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu–Nb alloys. Acta Materialia, 2006. 54(12): p. 3333-3341.
25. Tian, L., et al., Modeling the electrical resistivity of deformation processed metal–metal composites. Acta Materialia, 2014. 77: p. 151-161.
26. Li, Y., et al., Microstructure and properties of a novel Cu-Mg-Ca alloy with high strength and high electrical conductivity. Journal of Alloys and Compounds, 2017. 723: p. 1162-1170.
27. Morris, M.A., M. Leboeuf, and D.G. Morris, Recrystallization mechanisms in a CuCrZr alloy with a bimodal distribution of particles. Materials Science and Engineering: A, 1994. 188(1): p. 255-265.
28. Ghosh, G., J. Miyake, and M. Fine, The systems-based design of high-strength, high-conductivity alloys. Jom, 1997. 49(3): p. 56-60.
29. Chakrabarti, D.J., D.E. Laughlin, and L.E. Tanner, The Be−Cu (Beryllium-Copper) system. Bulletin of Alloy Phase Diagrams, 1987. 8(3): p. 269-282.
30. Rioja, R.J. and D.E. Laughlin, The sequence of precipitation in Cu-2w/0 Be alloys. Acta Metallurgica, 1980. 28(9): p. 1301-1313.
31. Koo, Y.M. and J.B. Cohen, The structure of GP zones in Cu-10.9 at.% Be. Acta Metallurgica, 1989. 37(5): p. 1295-1306.
32. Guoliang, X., et al., The precipitation behavior and strengthening of a Cu–2.0wt% Be alloy. Materials Science and Engineering: A, 2012. 558: p. 326-330.
33. Lei, Q., et al., Effect of aluminum on microstructure and property of Cu–Ni–Si alloys. Materials Science and Engineering: A, 2013. 572: p. 65-74.
34. Li, J., et al., Effect of Ni/Si Mass Ratio and Thermomechanical Treatment on the Microstructure and Properties of Cu-Ni-Si Alloys. Materials, 2019. 12(13): p. 2076.
35. Lei, Q., et al., Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes. Journal of Alloys and Compounds, 2017. 695: p. 2413-2423.
36. Pan, Z., et al., Progress of study of super-high strength Cu-Ni-Si alloy. Heat Treat. Met., 2007. 7: p. 55-59.
37. Lei, Q., et al., Phase transformations behavior in a Cu–8.0 Ni–1.8 Si alloy. Journal of alloys and compounds, 2011. 509(8): p. 3617-3622.
38. Li, J., et al., Relationship between the microstructure and properties of a peak aged Cu–Ni–Co–Si alloy. Materials Science and Technology, 2019. 35(5): p. 606-614.
39. Grylls, R.J., C.D.S. Tuck, and M.H. Loretto, Identification of orthorhombic phase in a high-strength cupronickel. Scripta Materialia, 1996. 34(1): p. 121-126.
40. Lei, Q., et al., A new ultrahigh strength Cu–Ni–Si alloy. Intermetallics, 2013. 42: p. 77-84.
41. Lee, E., et al., Effect of Ti addition on tensile properties of Cu-Ni-Si alloys. Metals and Materials International, 2011. 17(4): p. 569-576.
42. Lei, Q., et al., Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy. Materials Science and Engineering: A, 2017. 697: p. 37-47.
43. Pan, Z.-Y., et al., Thermomechanical treatment of super high strength Cu-8.0 Ni-1.8 Si alloy. Transactions of Nonferrous Metals Society of China, 2007. 17(s1B): p. s1076-s1080.
44. Lei, Q., et al., The evolution of microstructure in Cu–8.0Ni–1.8Si–0.15Mg alloy during aging. Materials Science and Engineering: A, 2010. 527(24-25): p. 6728-6733.
45. Cao, Y., et al., Effect of inclusion on strength and conductivity of Cu-Ni-Si alloys with discontinuous precipitation. Journal of Alloys and Compounds, 2020. 843: p. 156006.
46. Sokolovskaya, E.M., et al., Izv. Akad. Nauk SSSR, Met., 1973. 6: p. 114-119.
47. Zhang, J., et al., Disintegration of the net-shaped grain-boundary phase by multi-directional forging and its influence on the microstructure and properties of Cu–Ni–Si alloy. Materials Research Express, 2017. 4(9): p. 096511.
48. Wang, H.-S., et al., Improvement in strength and thermal conductivity of powder metallurgy produced Cu–Ni–Si–Cr alloy by adjusting Ni/Si weight ratio and hot forging. Journal of Alloys and Compounds, 2015. 633: p. 59-64.
49. Rdzawski, Z. and J. Stobrawa, Thermomechanical processing of Cu–Ni–Si–Cr–Mg alloy. Materials Science and Technology (United Kingdom), 1993. 9(2): p. 142-150.
50. Cheng, J.Y., et al., Evaluation of nanoscaled precipitates in a Cu–Ni–Si–Cr alloy during aging. Journal of Alloys and Compounds, 2014. 614: p. 189-195.
51. Zhao, Q., et al., Comparison of hot deformation behaviour and microstructural evolution for Ti-5Al-5V-5Mo-3Cr alloys prepared by powder metallurgy and ingot metallurgy approaches. Materials & Design, 2019. 169: p. 107682.
52. Ban, Y., et al., EBSD analysis of hot deformation behavior of Cu-Ni-Co-Si-Cr alloy. Materials Characterization, 2020. 169: p. 110656.
53. Humphreys, F. and M. Hatherly, Chapter 13-hot deformation and dynamic restoration. Recrystallization and related annealing phenomena, 2004: p. 415-450.
54. Xie, B., et al., DDRX and CDRX of an as-cast nickel-based superalloy during hot compression at γ′ sub-/super-solvus temperatures. Journal of Alloys and Compounds, 2019. 803: p. 16-29.
55. Humphreys, F.J. and M. Hatherly, Chapter 14 - Continuous Recrystallization During and after Large Strain Deformation, in Recrystallization and Related Annealing Phenomena (Second Edition), F.J. Humphreys and M. Hatherly, Editors. 2004, Elsevier: Oxford. p. 451-467.
56. Wu, Y., et al., Dynamic recrystallization and texture evolution of Ti-22Al-25Nb alloy during plane-strain compression. Journal of Alloys and Compounds, 2018. 749: p. 844-852.
57. Guo-Zheng, Q., Characterization for dynamic recrystallization kinetics based on stress-strain curves. Recent developments in the study of recrystallization, 2013: p. 61-64.
58. Mirzadeh, H. and M.H. Parsa, Hot deformation and dynamic recrystallization of NiTi intermetallic compound. Journal of Alloys and Compounds, 2014. 614: p. 56-59.
59. Yanagida, A. and J. Yanagimoto, A novel approach to determine the kinetics for dynamic recrystallization by using the flow curve. Journal of Materials Processing Technology, 2004. 151(1): p. 33-38.
60. Zhang, L., et al., Hot deformation behavior of Cu–8.0Ni–1.8Si–0.15Mg alloy. Materials Science and Engineering: A, 2011. 528(3): p. 1641-1647.
61. Wang, W., et al., Constitutive analysis and dynamic recrystallization behavior of as-cast 40CrNiMo alloy steel during isothermal compression. Journal of Materials Research and Technology, 2020. 9(2): p. 1929-1940.
62. Ryan, N. and H. McQueen, Strain rate and temperature dependence of hot strength in 301, 304, 316 and 317 steels in as-cast and worked conditions. Stainless Steels'87, 1987: p. 498-507.
63. McQueen, H.J. and N. Ryan, Constitutive analysis in hot working. Materials Science and Engineering: A, 2002. 322(1-2): p. 43-63.
64. Mohamadizadeh, A., A. Zarei-Hanzaki, and H.R. Abedi, Modified constitutive analysis and activation energy evolution of a low-density steel considering the effects of deformation parameters. Mechanics of Materials, 2016. 95: p. 60-70.
65. Shamsolhodaei, A., et al., The high temperature flow behavior modeling of NiTi shape memory alloy employing phenomenological and physical based constitutive models: A comparative study. Intermetallics, 2014. 53: p. 140-149.
66. Prasad, Y. and K. Rao, Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300–950 C. Materials Science and Engineering: A, 2005. 391(1-2): p. 141-150.
67. Marandi, A., et al., The prediction of hot deformation behavior in Fe–21Mn–2.5 Si–1.5 Al transformation-twinning induced plasticity steel. Materials Science and Engineering: A, 2012. 554: p. 72-78.
68. Cai, J., et al., Constitutive equations for elevated temperature flow stress of Ti–6Al–4V alloy considering the effect of strain. Materials & Design, 2011. 32(3): p. 1144-1151.
69. Wang, H., et al., Constitutive modelling for strain–hardening alloys during isothermal compression: An efficient semi-empirical method coupling the effects of strain, temperature and strain-rate. Materials Today Communications, 2020. 24: p. 101040.
70. Li, X., et al., The hot deformation behavior, microstructure evolution and texture types of as-cast Mg–Li alloy. Journal of Alloys and Compounds, 2020. 831: p. 154868.
71. Liu, J., et al., Hot deformation and dynamic recrystallization behavior of Cu-3Ti-3Ni-0.5Si alloy. Journal of Alloys and Compounds, 2019. 782: p. 224-234.
72. Satheesh Kumar, S., et al., Constitutive modeling for predicting peak stress characteristics during hot deformation of hot isostatically processed nickel-base superalloy. Journal of materials science, 2015. 50(19): p. 6444-6456.
73. Mirzadeh, H., J.M. Cabrera, and A. Najafizadeh, Modeling and Prediction of Hot Deformation Flow Curves. Metallurgical and Materials Transactions A, 2012. 43(1): p. 108-123.
74. Duan, Y., et al., Developed constitutive models, processing maps and microstructural evolution of Pb-Mg-10Al-0.5 B alloy. Materials Characterization, 2017. 129: p. 353-366.
75. Prasad, Y., et al., Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metallurgical Transactions A, 1984. 15(10): p. 1883-1892.
76. Li, J., F. Li, and Y. An, Characterization of Hot Deformation Behavior for Pure Aluminum Using 3D Processing Maps. High Temperature Materials and Processes, 2018. 37(9-10): p. 929-942.
77. Sarkar, J., Y. Prasad, and M. Surappa, Optimization of hot workability of an Al-Mg-Si alloy using processing maps. Journal of materials science, 1995. 30(11): p. 2843-2848.
78. Gegel, H., J. Malas, and S. Doraivelu, Process modeling of p/m extrusion, in Innovations in Materials Processing. 1985, Springer. p. 137-159.
79. Fu, H., J. Li, and X. Yun, Role of solidification texture on hot deformation behavior of a Cu–Ni–Si alloy with columnar grains. Materials Science and Engineering: A, 2021. 824: p. 141862.
80. Zhang, J., et al., Hot deformation behavior of Ti-15-3 titanium alloy: a study using processing maps, activation energy map, and Zener–Hollomon parameter map. Journal of Materials Science, 2012. 47(9): p. 4000-4011.
81. Sun, Y., et al., Characterization of hot processing parameters of powder metallurgy TiAl-based alloy based on the activation energy map and processing map. Materials & Design, 2015. 86: p. 922-932.
82. Hutchings, I. and P. Shipway, Tribology: friction and wear of engineering materials. 2017: Butterworth-Heinemann.
83. Evans, A., Wear mechanisms in ceramics. Fundamentals Friction and Wear of Materials, 1981.
84. Bhushan, B., Principles and applications of tribology. 1999: John Wiley & Sons.
85. Lin, S.-J. and K.-S. Liu, Effect of aging on abrasion rate in an AlZnMgSiC composite. Wear, 1988. 121(1): p. 1-14.
86. Flores, P., Modeling and simulation of wear in revolute clearance joints in multibody systems. Mechanism and Machine Theory, 2009. 44(6): p. 1211-1222.
87. Tjong, S.C., Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Materials Science and Engineering: R: Reports, 2013. 74(10): p. 281-350.
88. Stott, F., The role of oxidation in the wear of alloys. Tribology International, 1998. 31(1-3): p. 61-71.
89. Johnson, K.L., K. Kendall, and a. Roberts, Surface energy and the contact of elastic solids. Proceedings of the royal society of London. A. mathematical and physical sciences, 1971. 324(1558): p. 301-313.
90. Zhou, Y.-H., M. Harmelin, and J. Bigot, Sintering behaviour of ultra-fine Fe, Ni and Fe-25wt% Ni powders. Scripta metallurgica, 1989. 23(8): p. 1391-1396.
91. Takeuchi, A. and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 2005. 46(12): p. 2817-2829.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *