|
1 Wagemans, C. The nuclear fission process. (1991). 2 游璦宇. 戰爭中的物理--希特勒破碎的原子彈夢與美國曼哈頓計畫. Chinese Physics 9, 1-16 (2008). 3 Ayres, G. The approach associated with the continued operation of the Calder Hall and Chapelcross nuclear power stations to 50 years. (1996). 4 志举 & 海容. 台湾十大工程掠影. 海洋世界, 45-45 (1999). 5 曾昱瑋 et al. 核能, 何能. (2015). 6 謝牧謙 et al. 福島事故後台日エネルギ: 政策の変換と原子力協力. Vol. 23 (國立臺灣大學出版中心, 2017). 7 余莓莓 & 黃琬珺. 核四公投的民主理想與現實困境. 臺灣國際研究季刊 9, 179-199 (2013). 8 林德福. 核能發電在台灣. 鑛冶: 中國鑛冶工程學會會刊 57, 7-10 (2013). 9 Chiao, L.-h. 符合世界經濟合作暨開發組織 (OECD)[國際核設施除役成本架構 (ISDC)] 之除役成本估算模式探討-以國內 CS 核電廠為例, National Central University, (2014). 10 胡毓青. 國內核能電廠除役方式評選之研究. (2008). 11 曾柏鈞. 核電廠除役時不銹鋼基材與異材銲件之電化學除污技術研究 碩士 thesis, 國立清華大學, (2020). 12 Roberts, J. A. Structural materials in nuclear power systems. (Springer Science & Business Media, 2013). 13 Gordon, B. M. Corrosion and Corrosion Control in Light Water Reactors. Jom 65, 1043-1056 (2013). https://doi.org:10.1007/s11837-013-0658-4 14 Dubey, V. & Kain, V. Oxidation Behavior of Carbon Steel: Effect of Formation Temperature and pH of the Environment. Journal of Materials Engineering and Performance 26, 5312-5322 (2017). https://doi.org:10.1007/s11665-017-3027-6 15 Xie, Y. & Zhang, J. Corrosion and deposition on the secondary circuit of steam generators. Journal of Nuclear Science and Technology 53, 1455-1466 (2016). https://doi.org:10.1080/00223131.2016.1152923 16 Lin, C.-C. & Hu, C.-C. Electropolishing of 304 stainless steel: Surface roughness control using experimental design strategies and a summarized electropolishing model. Electrochimica Acta 53, 3356-3363 (2008). 17 Han, W. & Fang, F. Fundamental aspects and recent developments in electropolishing. International Journal of Machine Tools and Manufacture 139, 1-23 (2019). https://doi.org:10.1016/j.ijmachtools.2019.01.001 18 Lu, C., Tang, Q., Chen, M., Zhou, X. & Zheng, Z. Study on ultrasonic electrochemical decontamination. Journal of Radioanalytical and Nuclear Chemistry 316, 1-7 (2018). https://doi.org:10.1007/s10967-018-5717-4 19 Szklarska-Smialowska, Z. Pitting corrosion of metals. National Association of Corrosion Engineers, 1440 South Creep Drive, Houston, Texas 77084, USA, 1986. 431 (1986). 20 Hoch, G., Staehle, R., Brown, B., Kruger, J. & Agrawal, A. (NACE International, Houston, 1974). 21 Pickering, H. W. The significance of the local electrode potential within pits, crevices and cracks. Corrosion Science 29, 325-341 (1989). 22 SUZUKI, T. & KITAMURA, Y. Critical potential for growth of localized corrosion of stainless steel in chloride media. Corrosion 28, 1-6 (1972). 23 Frankel, G. S. & Newman, R. C. in G. S. Frankel, and R. C. Newman, symposium held October, 1991 in Phoenix, Arizona,$ 45 member,$ 54 nonmember. Avail. from Electrochemical Society, PV-CFLC. Book. 24 Mayet, H. & Baroux, B. Critical Factors in Localized Corrosion II in PM Natishan, RG Kelly, GS Frankel, and R. Newman, Editors, PV, 95-15 (1995). 25 Revesz, A. & Kruger, J. Passivity of metals. RP Frankenthal and Jerome Kruger, Editors, 137 (1978). 26 Ambrose, J., Frankenthal, R. & Kruger, J. Passivity of metals. The electrochemical society. Princeton (NJ): Corrosion Monograph Series, 740 (1978). 27 王佳 & 曹楚南. 孔蚀发展期的电极阻抗频谱特征. 中国腐蚀与防护学报 9, 271-279 (1989). 28 曹楚南, 常晓元 & 林海潮. 孔蚀过程中的电化学噪声特征. 中国腐蚀与防护学报 9, 21-28 (1989). 29 Frankel, G. Pitting corrosion of metals: a review of the critical factors. Journal of the Electrochemical society 145, 2186 (1998). 30 Zhou, Y. & Yan, F. The relation between intergranular corrosion and electrochemical characteristic of carbon steel in carbonic. International Journal of Electrochemical Science 11, 3976-3986 (2016). 31 Tedmon, C., Vermilyea, D. & Rosolowski, J. Intergranular corrosion of austenitic stainless steel. Journal of the Electrochemical Society 118, 192 (1971). 32 Armijo, J. Intergranular corrosion of nonsensitized austenitic stainless steels. Corrosion 24, 24-30 (1968). 33 Wilson, F. Mechanism of intergranular corrosion of austenitic stainless steels—literature review. British Corrosion Journal 6, 100-108 (1971). 34 Matula, M. et al. Intergranular corrosion of AISI 316L steel. Materials characterization 46, 203-210 (2001). 35 Gao, Y., Zhang, C., Xiong, X., Zheng, Z. & Zhu, M. Intergranular corrosion susceptibility of a novel Super304H stainless steel. Engineering Failure Analysis 24, 26-32 (2012). 36 Pradhan, S., Bhuyan, P. & Mandal, S. Individual and synergistic influences of microstructural features on intergranular corrosion behavior in extra-low carbon type 304L austenitic stainless steel. Corrosion Science 139, 319-332 (2018). 37 Pardo, A. et al. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels. Acta Materialia 55, 2239-2251 (2007). 38 罗宏 & 龚敏. 奥氏体不锈钢的晶间腐蚀. 腐蚀科学与防护技术 18, 357-360 (2006). 39 廖啟民. 不銹鋼的沿晶腐蝕和應力腐蝕破裂. 防蝕工程 3, 4-19 (1989). 40 Küpper, J., Erhart, H. & Grabke, H.-J. Intergranular corrosion of iron-phosphorus alloys in nitrate solutions. Corrosion Science 21, 227-238 (1981). 41 Krautschick, H., Grabke, H. & Diekmann, W. The effect of phosphorus on the mechanism of intergranular stress corrosion cracking of mild steels in nitrate solutions. Corrosion science 28, 251-258 (1988). 42 Jeon, S.-H., Son, Y.-H., Choi, W.-I., Song, G. D. & Hur, D. H. Simulating Porous Magnetite Layer Deposited on Alloy 690TT Steam Generator Tubes. Materials 11 (2018). 43 Zhou, W., Apkarian, R., Wang, Z. L. & Joy, D. Fundamentals of scanning electron microscopy (SEM). Scanning Microscopy for Nanotechnology: Techniques and Applications, 1-40 (2007). 44 Inkson, B. J. in Materials characterization using nondestructive evaluation (NDE) methods 17-43 (Elsevier, 2016). 45 Nanakoudis, A. 什麼是SEM?淺談掃描式電子顯微鏡技術, 2019). 46 羅勝全. in 科學研習月刊 (2013). 47 Vehmaanperä, P., Sihvonen, T., Salmimies, R. & Häkkinen, A. Dissolution of Magnetite and Hematite in Mixtures of Oxalic and Nitric Acid: Mechanisms and Kinetics. Minerals 12 (2022). 48 Almeida, E., Pereira, D., Figueiredo, M. O., Lobo, V. M. M. & Morcillo, M. The influence of the interfacial conditions on rust conversion by phosphoric acid. Corrosion Science 39, 1561-1570 (1997). https://doi.org:https://doi.org/10.1016/S0010-938X(97)00058-9 49 Kothari, H. M. et al. Electrochemical deposition and characterization of Fe3O4 films produced by the reduction of Fe(III)-triethanolamine. Journal of Materials Research 21, 293-301 (2006). https://doi.org:10.1557/jmr.2006.0030
|