帳號:guest(3.133.109.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張詠淩
作者(外文):Chang, Yung-Ling
論文名稱(中文):銅銦鎵硒太陽能電池於搪瓷鋼基板與硒硫化製程中硫化對元件背電極之影響
論文名稱(外文):Cu(In, Ga)Se2 Solar Cells on Enameled Steel Substrate and the Effect of Sulfurization after Selenization towards the Back-contact
指導教授(中文):賴志煌
甘炯耀
指導教授(外文):Lai, Chih-Huang
Gan, Jon-Yiew
口試委員(中文):沈昌宏
林姿瑩
口試委員(外文):Shen, Chang-Hong
Ling, Tzu-Ying
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:109031516
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:79
中文關鍵詞:薄膜太陽能電池銅銦鎵硒背電極太陽能電池
外文關鍵詞:CIGSethin-film solar cellsback-contactsulfurizationsolar cells
相關次數:
  • 推薦推薦:0
  • 點閱點閱:283
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來太陽能電池不論是在車用、工業用或是家用的需求都日益增加。而銅銦鎵硒作為薄膜太陽能電池,優點在於本身是直接能隙材料、相較於常見的矽晶太陽能電池有更高的吸收係數、可根據成分調控能隙大小、且薄膜的特性使其具備可撓性,在建築整合光伏元件領域相當具有潛力。然而銅銦鎵硒太陽能電池模組也面臨著不少的挑戰,本論文針對兩個議題分為兩部分進行研究,第一部分是對於可撓式基板如不鏽鋼、聚醯亞胺普遍有的鹼金屬不足問題。為了解決此問題,在不鏽鋼基板上鍍覆一層富含鹼金屬的搪瓷(enamel),同時也可作為雜質的擴散阻擋層,最後使用後硒化製程達到元件效率7%。第二部分則是針對業界中較常使用的硒硫化製程中,研究硫化製程除了幫助吸收層上表面與緩衝層之間有更好的接觸之餘,在背電極產生的各種二次相之影響,並進一步證明這些二次相確實提高背電極接面的能障。
 In the recent years, the demand of solar cells is increasing, no matter on vehicle, industries, or family. As a thin film solar cell, Cu(In, Ga)Se2 with its direct band gap, higher absorption coefficient compared to Si solar cells, tunable band gap, and flexibility is considered a promising material for BIPV(Building-integrated photovoltaics). However, there are lot of challenges for CIGS solar cell. This thesis focus on two issues and can be divided into two parts. The first part is about the deficient of alkali metal in the traditional flexible substrates, such as stainless steel and polyimide. In order to solve this problem, we deposited an alkali-rich layer on the stainless steel, which is known as enameled steel. This enamel layer can also be a diffusion barrier layer. The efficiency can reach 7% by the sequential process. The second part is for sulfurization after selenization process, a commonly-used process in industrial community. We investigate the effect of sulfurization process towards back-contact to understand that in spite of the improvement of the front interface, the effect of secondary phases formed during the process. And further prove that these secondary indeed increase the backside barrier height.
目錄
摘要 I
Abstract II
第1章 緒論與研究動機 1
第2章 文獻回顧 2
2.1 太陽能電池原理 2
2.1.1 電流-電壓曲線(Current-voltage curve, I-V Curve) 3
2.1.2 開路電壓(Open-circuit voltage, VOC) 4
2.1.3 短路電流密度(Short-circuit current density, JSC) 5
2.1.4 填充因子(Fill factor, FF) 5
2.1.5 串聯電阻與並聯電阻(Series resistance and shunt resistance) 6
2.1.6 光電轉換效率 7
2.2 銅銦鎵硒(CIGS)太陽能電池元件 7
2.2.1 元件膜層結構 7
2.2.2 基板 7
2.2.3 背電極 8
2.2.4 吸收層 8
2.2.5 緩衝層 11
2.2.6 窗口層 11
2.2.7 上電極 12
2.3 CIGS太陽能電池在可撓式基板上之研究 13
2.3.1 軟性基板簡介 13
2.3.2 可撓式基板面臨的議題 15
2.3.3 擴散阻擋層(Diffusion barrier layer) 16
2.4 CIGS太陽能電池製程的發展 18
2.4.1 共蒸鍍製程 18
2.4.2 連續製程/合金後硒硫化製程(Sequential process/sulfurization after selenization process, SAS) 21
2.4.3 非真空製程(Non-vacuum deposition process) 25
第3章 分析與實驗方法 28
3.1 試片製作與實驗設計 28
3.1.1 搪瓷鋼製程 28
3.1.2 合金後硒硫化試片製程 31
3.2 材料分析儀器與原理 32
3.2.1 雷射掃描共軛焦顯微鏡(Laser scanning confocal microscopy, LSCM) 32
3.2.2 I-V參數分析儀 33
3.2.3 外部量子效率分析儀(External Quantum Efficiency, EQE) 33
3.2.4 X射線螢光光譜儀(X-ray Fluorescence Spectrometer, XRF) 34
3.2.5 X光繞射儀(X-ray Diffractometer, XRD) 35
3.2.6 冷場發射掃描式電子顯微鏡(Field-emission Scanning Electron Microscope, FE-SEM) 36
3.2.7 拉曼光譜儀(Raman Spectrometer) 38
3.2.8 奈米級歐傑電子能譜儀(Nano-Auger Electron Spectroscopy) 39
第4章 結果與討論 44
4.1 第一部分 銅銦鎵硒太陽能電池於搪瓷鋼 44
4.1.1 試片準備與分析 44
4.1.2 Solibro Trial基板 46
4.1.3 Solibro Trial以外型號之基板 48
4.1.4 電性分析 50
4.2 第二部分 硒硫化製程對元件背電極的影響 52
4.2.1 試片種類 53
4.2.2 定性分析 53
4.2.3 電性分析 61
第5章 結論與未來展望 67
參考文獻 69

[1] K. Yamamoto, K. Yoshikawa, H. Uzu, and D. Adachi, "High-efficiency heterojunction crystalline Si solar cells," Japanese Journal of Applied Physics, vol. 57, no. 8S3, p. 08RB20, 2018.
[2] M. Moslehi et al., "20.6% efficiency 156 mm x 156 mm full-square solar cells using low-cost kerfless ultrathin epitaxial silicon & porous silicon lift-off technology for industry-leading high-performance smart PV modules," in PV Asia Pacific Conference (APVIA/PVAP), 2012, vol. 24.
[3] M. A. Green et al., "Solar cell efficiency tables (version 50)," Progress in photovoltaics: research and applications, vol. 25, no. 7, pp. 668-676, 2017.
[4] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, "Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%," IEEE Journal of Photovoltaics, vol. 9, no. 6, pp. 1863-1867, 2019.
[5] R. Diermann, "Avancis claims 19.64% efficiency for CIGS module," PV Magazine International, 2021.
[6] c. Wikipedia, "P–n junction," in Wikipedia, The Free Encyclopedia., ed.
[7] F. A. Lindholm, J. G. Fossum, and E. L. Burgess, "Application of the superposition principle to solar-cell analysis," IEEE transactions on electron devices, vol. 26, no. 3, pp. 165-171, 1979.
[8] C. B. H. a. S.G.Bowden. "Current voltage (IV) cure of a solar cell." National Tsing Hua University. https://www.pveducation.org/ (accessed.
[9] S. Ishizuka et al., "Na-induced variations in the structural, optical, and electrical properties of Cu(In, Ga)Se2 thin films," Journal of Applied Physics, vol. 106, no. 3, p. 034908, 2009.
[10] E. I. Ahamed, M. Matin, and N. Amin, "Modeling and simulation of highly efficient ultra-thin CIGS solar cell with MoSe2 tunnel," in 2017 4th International Conference on Advances in Electrical Engineering (ICAEE), 2017: IEEE, pp. 681-685.
[11] S.-H. Wei, S. Zhang, and A. Zunger, "Effects of Na on the electrical and structural properties of CuInSe2," Journal of Applied Physics, vol. 85, no. 10, pp. 7214-7218, 1999.
[12] G. Regmi et al., "Perspectives of chalcopyrite-based CIGSe thin-film solar cell: a review," Journal of Materials Science: Materials in Electronics, vol. 31, no. 10, pp. 7286-7314, 2020.
[13] M. Marudachalam, R. Birkmire, H. Hichri, J. Schultz, A. Swartzlander, and M. Al-Jassim, "Phases, morphology, and diffusion in CuInxGa1−xSe2 thin films," Journal of Applied Physics, vol. 82, no. 6, pp. 2896-2905, 1997.
[14] M. Contreras et al., "Graded band‐gap Cu(In, Ga)Se2 thin‐film solar cell absorber with enhanced open‐circuit voltage," Applied Physics Letters, vol. 63, no. 13, pp. 1824-1826, 1993.
[15] A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, and A. M. Hermann, "High‐efficiency CuInx Ga1−xSe2 solar cells made from (Inx, Ga1−x)2Se3 precursor films," Applied physics letters, vol. 65, no. 2, pp. 198-200, 1994.
[16] M. Gloeckler and J. Sites, "Band-gap grading in Cu(In, Ga)Se2 solar cells," Journal of Physics and Chemistry of Solids, vol. 66, no. 11, pp. 1891-1894, 2005.
[17] A. Parisi et al., "Graded carrier concentration absorber profile for high efficiency CIGS solar cells," International journal of Photoenergy, vol. 2015, 2015.
[18] Y. Hirai, Y. Kurokawa, and A. Yamada, "Numerical study of Cu(In, Ga)Se2 solar cell performance toward 23% conversion efficiency," Japanese Journal of Applied Physics, vol. 53, no. 1, p. 012301, 2013.
[19] U. P. Singh and S. P. Patra, "Progress in polycrystalline thin-film Cu(In, Ga) solar cells," International Journal of Photoenergy, vol. 2010, 2010.
[20] J. Ramanujam and U. P. Singh, "Copper indium gallium selenide based solar cells–a review," Energy & Environmental Science, vol. 10, no. 6, pp. 1306-1319, 2017.
[21] T. Kobayashi, T. Kumazawa, Z. J. L. Kao, and T. Nakada, "Post-treatment effects on ZnS(O, OH)/Cu(In, Ga)Se2 solar cells deposited using thioacetamide-ammonia based solution," Solar energy materials and solar cells, vol. 123, pp. 197-202, 2014.
[22] M. Buffière, N. Barreau, L. Arzel, P. Zabierowski, and J. Kessler, "Minimizing metastabilities in Cu(In, Ga)Se2/(CBD) Zn (S, O, OH)/i‐ZnO‐based solar cells," Progress in Photovoltaics: Research and Applications, vol. 23, no. 4, pp. 462-469, 2015.
[23] N. Naghavi, S. Temgoua, T. Hildebrandt, J. F. Guillemoles, and D. Lincot, "Impact of oxygen concentration during the deposition of window layers on lowering the metastability effects in Cu(In, Ga)Se2/CBD Zn(S, O) based solar cell," Progress in Photovoltaics: Research and Applications, vol. 23, no. 12, pp. 1820-1827, 2015.
[24] T. Saga, "Advances in crystalline silicon solar cell technology for industrial mass production," npg asia materials, vol. 2, no. 3, pp. 96-102, 2010.
[25] J. Ramanujam et al., "Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review," Progress in Materials Science, vol. 110, p. 100619, 2020.
[26] A. Tiwari, A. Romeo, D. Baetzner, and H. Zogg, "Flexible CdTe solar cells on polymer films," Progress in Photovoltaics: Research and Applications, vol. 9, no. 3, pp. 211-215, 2001.
[27] P. Reinhard et al., "Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules," in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, 2012: IEEE, pp. 1-9.
[28] J. Rechid et al., "9% efficiency: CIGS on Cu substrate," in 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of, 2003, vol. 1: IEEE, pp. 559-561.
[29] R. Wuerz, A. Eicke, F. Kessler, S. Paetel, S. Efimenko, and C. Schlegel, "CIGS thin-film solar cells and modules on enamelled steel substrates," Solar Energy Materials and Solar Cells, vol. 100, pp. 132-137, 2012.
[30] M. Powalla et al., "CIGS cells and modules with high efficiency on glass and flexible substrates," IEEE journal of photovoltaics, vol. 4, no. 1, pp. 440-446, 2013.
[31] F. Pianezzi et al., "Electronic properties of Cu(In, Ga)Se2 solar cells on stainless steel foils without diffusion barrier," Progress in Photovoltaics: Research and Applications, vol. 20, no. 3, pp. 253-259, 2012.
[32] F. Pianezzi et al., "Influence of Ni and Cr impurities on the electronic properties of Cu(In, Ga)Se2 thin film solar cells," Progress in Photovoltaics: Research and Applications, vol. 23, no. 7, pp. 892-900, 2015.
[33] R. Wuerz, A. Eicke, F. Kessler, and F. Pianezzi, "Influence of iron on the performance of CIGS thin-film solar cells," Solar energy materials and solar cells, vol. 130, pp. 107-117, 2014.
[34] L. Zortea et al., "Cu(In, Ga)Se2 solar cells on low cost mild steel substrates," Solar Energy, vol. 175, pp. 25-30, 2018.
[35] D. Bae, S. Kwon, J. Oh, W. K. Kim, and H. Park, "Investigation of Al2O3 diffusion barrier layer fabricated by atomic layer deposition for flexible Cu(In, Ga)Se2 solar cells," Renewable Energy, vol. 55, pp. 62-68, 2013.
[36] H. Park, S. C. Kim, H. C. Bae, T. Cheon, S.-H. Kim, and W. K. Kim, "ALD-Grown Al2O3 as a Diffusion Barrier for Stainless Steel Substrates for Flexible Cu(In, Ga)Se2 Solar Cells," Molecular Crystals and Liquid Crystals, vol. 551, no. 1, pp. 147-153, 2011.
[37] J. Martinez-Perdiguero et al., "Electrical insulation and breakdown properties of SiO2 and Al2O3 thin multilayer films deposited on stainless steel by physical vapor deposition," Thin Solid Films, vol. 595, pp. 171-175, 2015.
[38] J.-K. Sim, S.-K. Lee, J.-S. Kim, K.-U. Jeong, H.-K. Ahn, and C.-R. Lee, "Efficiency enhancement of CIGS compound solar cell fabricated using homomorphic thin Cr2O3 diffusion barrier formed on stainless steel substrate," Applied Surface Science, vol. 389, pp. 645-650, 2016.
[39] J.-M. Delgado-Sanchez, N. Guilera, L. Francesch, M. D. Alba, L. Lopez, and E. Sanchez, "Ceramic barrier layers for flexible thin film solar cells on metallic substrates: a laboratory scale study for process optimization and barrier layer properties," ACS Applied Materials & Interfaces, vol. 6, no. 21, pp. 18543-18549, 2014.
[40] V. Depredurand, Y. Aida, J. Larsen, T. Eisenbarth, A. Majerus, and S. Siebentritt, "Surface treatment of CIS solar cells grown under Cu-excess," in 2011 37th IEEE Photovoltaic Specialists Conference, 2011: IEEE, pp. 000337-000342.
[41] K. O’Donnell, R. Martin, and S. Pereira, "Comment on “Low Stokes shift in thick and homogeneous InGaN epilayers”[Appl. Phys. Lett. 80, 550 (2002)]," Applied physics letters, vol. 81, no. 7, pp. 1353-1354, 2002.
[42] W. N. Shafarman and J. Zhu, "Effect of substrate temperature and depostion profile on evaporated Cu(InGa)Se2 films and devices," Thin Solid Films, vol. 361, pp. 473-477, 2000.
[43] R. A. Mickelsen and W. S. Chen, "High photocurrent polycrystalline thin‐film CdS/CuInSe2 solar cella," Applied Physics Letters, vol. 36, no. 5, pp. 371-373, 1980.
[44] J. R. Tuttle, D. Albin, and R. Noufi, "Thoughts on the microstructure of polycrystalline thin film CuInSe2 and its impact on material and device performance," Solar cells, vol. 30, no. 1-4, pp. 21-38, 1991.
[45] T. Wada, N. Kohara, T. Negami, and M. Nishitani, "Growth of CuInSe2 crystals in Cu-rich Cu–In–Se thin films," Journal of Materials Research, vol. 12, no. 6, pp. 1456-1462, 1997.
[46] P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, and M. Powalla, "Compositional investigation of potassium doped Cu(In, Ga)Se2 solar cells with efficiencies up to 20.8%," physica status solidi (RRL)–Rapid Research Letters, vol. 8, no. 3, pp. 219-222, 2014.
[47] A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, and A. M. Hermann, "High‐efficiency CuInxGa1− xSe2 solar cells made from (Inx, Ga1−-x)2Se3 precursor films," Applied physics letters, vol. 65, no. 2, pp. 198-200, 1994.
[48] S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, and S. Niki, "Structural tuning of wide‐gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow‐gap Cu(In, Ga)Se2," Progress in Photovoltaics: Research and Applications, vol. 22, no. 7, pp. 821-829, 2014.
[49] K. H. Kim, K. H. Yoon, J. H. Yun, and B. T. Ahn, "Effects of Se flux on the microstructure of Cu(In, Ga)Se2 thin film deposited by a three-stage co-evaporation process," Electrochemical and Solid-State Letters, vol. 9, no. 8, p. A382, 2006.
[50] S. Chaisitsak, A. Yamada, and M. Konagai, "Preferred orientation control of Cu(In1-xGax)Se2 (x≈0.28) thin films and its influence on solar cell characteristics," Japanese Journal of Applied Physics, vol. 41, no. 2R, p. 507, 2002.
[51] C. A. Wolden et al., "Photovoltaic manufacturing: Present status, future prospects, and research needs," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, no. 3, p. 030801, 2011.
[52] Y. E. Romanyuk et al., "All solution‐processed chalcogenide solar cells–from single functional layers towards a 13.8% efficient CIGS device," Advanced Functional Materials, vol. 25, no. 1, pp. 12-27, 2015.
[53] T. Feurer et al., "Progress in thin film CIGS photovoltaics–Research and development, manufacturing, and applications," Progress in Photovoltaics: Research and Applications, vol. 25, no. 7, pp. 645-667, 2017.
[54] S. Niki et al., "CIGS absorbers and processes," Progress in Photovoltaics: Research and Applications, vol. 18, no. 6, pp. 453-466, 2010.
[55] H. K. Song et al., "Preparation of CuIn1− xGaxSe2 thin films by sputtering and selenization process," Solar energy materials and solar cells, vol. 75, no. 1-2, pp. 145-153, 2003.
[56] G. Chen, J. Yang, Y. Chan, L. Yang, and W. Huang, "Another route to fabricate single-phase chalcogenides by post-selenization of Cu–In–Ga precursors sputter deposited from a single ternary target," Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1351-1355, 2009.
[57] T.-T. Wu et al., "Toward high efficiency and panel size 30× 40 cm2 Cu(In, Ga)Se2 solar cell: Investigation of modified stacking sequences of metallic precursors and pre-annealing process without Se vapor at low temperature," Nano Energy, vol. 10, pp. 28-36, 2014.
[58] H. Park et al., "Effect of precursor structure on Cu(InGa)Se2 formation by reactive annealing," Thin Solid Films, vol. 519, no. 21, pp. 7245-7249, 2011.
[59] S. S. Schmidt et al., "Adjusting the Ga grading during fast atmospheric processing of Cu(In, Ga)Se2 solar cell absorber layers using elemental selenium vapor," Progress in Photovoltaics: Research and Applications, vol. 25, no. 5, pp. 341-357, 2017.
[60] C. H. Hsu et al., "Na‐induced efficiency boost for Se‐deficient Cu(In, Ga)Se2 solar cells," Progress in Photovoltaics: Research and Applications, vol. 23, no. 11, pp. 1621-1629, 2015.
[61] C. H. Hsu, W. H. Ho, S. Y. Wei, and C. H. Lai, "Over 14% efficiency of directly sputtered Cu(In, Ga)Se2 absorbers without postselenization by post‐treatment of alkali metals," Advanced Energy Materials, vol. 7, no. 13, p. 1602571, 2017.
[62] T.-Y. Lin, C.-H. Chen, L.-W. Wang, W.-C. Huang, Y.-W. Jheng, and C.-H. Lai, "Engineering Na-transport to achieve high efficiency in ultrathin Cu(In, Ga)Se2 solar cells with controlled preferred orientation," Nano Energy, vol. 41, pp. 697-705, 2017.
[63] Y.-H. Wang et al., "Engineering a Ga-Gradient by One-Step Sputtering to Achieve Over 15% Efficiency of Cu(In, Ga)Se2 Flexible Solar Cells without Post-selenization," ACS applied materials & interfaces, vol. 12, no. 25, pp. 28320-28328, 2020.
[64] Y.-H. Wang, L.-H. Tu, Y.-L. Chang, S.-K. Lin, T.-Y. Lin, and C.-H. Lai, "Surface Sulfurization of Cu(In, Ga)Se2 Solar Cells by Cosputtering In2S3 in the One-Step Sputtering Process," ACS Applied Energy Materials, vol. 4, no. 10, pp. 11555-11563, 2021.
[65] K.-J. Hsiao, J.-D. Liu, H.-H. Hsieh, and T.-S. Jiang, "Electrical impact of MoSe2 on CIGS thin-film solar cells," Physical Chemistry Chemical Physics, vol. 15, no. 41, pp. 18174-18178, 2013.
[66] N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, and T. Wada, "Electrical properties of the Cu(In, Ga)Se2/MoSe2/mo structure," Solar Energy Materials and Solar Cells, vol. 67, no. 1-4, pp. 209-215, 2001.
[67] W.-W. Hsu et al., "Surface passivation of Cu(In, Ga)Se2 using atomic layer deposited Al2O3," Applied Physics Letters, vol. 100, no. 2, p. 023508, 2012.
[68] W. Liu, Y. Sun, W. Li, C.-J. Li, F.-Y. Li, and J.-G. Tian, "Influence of different precursor surface layers on Cu(In1-xGax)Se2 thin film solar cells," Applied Physics A, vol. 88, no. 4, pp. 653-656, 2007.
[69] Y.-C. Wang and H.-P. D. Shieh, "Double-graded bandgap in Cu(In, Ga)Se2 thin film solar cells by low toxicity selenization process," Applied Physics Letters, vol. 105, no. 7, p. 073901, 2014.
[70] W. Witte et al., "Gallium gradients in Cu(In,Ga)Se2 thin-film solar cells," Progress in Photovoltaics: Research and Applications, vol. 23, no. 6, pp. 717-733, 2015, doi: 10.1002/pip.2485.
[71] W. Witte et al., "Gallium gradients in Cu(In, Ga)Se2 thin‐film solar cells," Progress in Photovoltaics: Research and Applications, vol. 23, no. 6, pp. 717-733, 2015.
[72] T. Klinkert et al., "New insights into the Mo/Cu(In, Ga)Se2 interface in thin film solar cells: Formation and properties of the MoSe2 interfacial layer," The Journal of chemical physics, vol. 145, no. 15, p. 154702, 2016.
[73] D. Abou-Ras et al., "Formation and characterisation of MoSe2 for Cu(In, Ga)Se2 based solar cells," Thin Solid Films, vol. 480, pp. 433-438, 2005.
[74] P. Schöppe et al., "Improved Ga grading of sequentially produced Cu(In, Ga)Se2 solar cells studied by high resolution X-ray fluorescence," Applied Physics Letters, vol. 106, no. 1, p. 013909, 2015.
[75] S.-M. Youn, J.-H. Kim, and C. Jeong, "Improvement of Pre-Annealed Cu(In, Ga)Se2 Absorbers for High Efficiency," Journal of Nanoscience and Nanotechnology, vol. 16, no. 5, pp. 5003-5007, 2016.
[76] G. Li et al., "The influence of pre-heating temperature on the CIGS thin film growth and device performance prepared in cracked-Se atmosphere," Semiconductor Science and Technology, vol. 30, no. 10, p. 105012, 2015.
[77] M. Marudachalam, H. Hichri, R. Klenk, R. Birkmire, W. Shafarman, and J. Schultz, "Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere," Applied Physics Letters, vol. 67, no. 26, pp. 3978-3980, 1995.
[78] S.-K. Lee et al., "Se interlayer in CIGS absorption layer for solar cell devices," Journal of Alloys and Compounds, vol. 633, pp. 31-36, 2015.
[79] Y.-C. Wang and H.-P. D. Shieh, "Improvement of bandgap homogeneity in Cu(In, Ga)Se2 thin films using a modified two-step selenization process," Applied Physics Letters, vol. 103, no. 15, p. 153502, 2013.
[80] S.-Y. Hsiao et al., "Characteristics of Cu(In, Ga)Se2 films prepared by atmospheric pressure selenization of Cu-In-Ga precursors using ditert-butylselenide as Se source," Journal of The Electrochemical Society, vol. 159, no. 4, p. H378, 2012.
[81] M. S. Park, S.-J. Sung, and D.-H. Kim, "Crystallization Behavior of Solution-Processed CIGSe Thin Film Semiconductor by Stepwise Annealing Process," Journal of Nanoscience and Nanotechnology, vol. 15, no. 3, pp. 2490-2494, 2015.
[82] L.-H. Tu, C.-H. Cai, and C.-H. Lai, "Tuning Ga Grading in Selenized Cu(In, Ga)Se2 Solar Cells by Formation of Ordered Vacancy Compound," Solar RRL, vol. 5, no. 3, p. 2000626, 2021.
[83] H. Azimi, Y. Hou, and C. J. Brabec, "Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells," Energy & Environmental Science, vol. 7, no. 6, pp. 1829-1849, 2014.
[84] S. N. Sharma, P. Chawla, and A. Srivastava, "Solution-based colloidal synthesis of hybrid P3HT: Ternary CuInSe2 nanocomposites using a novel combination of capping agents for low-cost photovoltaics," Physica E: Low-dimensional Systems and Nanostructures, vol. 80, pp. 101-107, 2016.
[85] P. Chawla, S. N. Sharma, and S. Singh, "Low-cost fabrication of ternary CuInSe2 nanocrystals by colloidal route using a novel combination of volatile and non-volatile capping agents," Journal of Solid State Chemistry, vol. 219, pp. 9-14, 2014.
[86] R. Bhattacharya, "Solution growth and electrodeposited CuInSe2 thin films," Journal of the Electrochemical Society, vol. 130, no. 10, p. 2040, 1983.
[87] C. Broussillou et al., "Statistical Process Control for Cu(In, Ga)(S, Se)2 electrodeposition-based manufacturing process of 60× 120 cm2 modules up to 14.0% efficiency," in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015: IEEE, pp. 1-5.
[88] M. Ganchev et al., "Preparation of Cu(In, Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors," Thin Solid Films, vol. 511, pp. 325-327, 2006.
[89] T. K. Todorov, O. Gunawan, T. Gokmen, and D. B. Mitzi, "Solution‐processed Cu(In, Ga)(S, Se)2 absorber yielding a 15.2% efficient solar cell," Progress in Photovoltaics: Research and Applications, vol. 21, no. 1, pp. 82-87, 2013.
[90] M. S. Shackley, "An introduction to X-ray fluorescence (XRF) analysis in archaeology," in X-ray fluorescence spectrometry (XRF) in geoarchaeology: Springer, 2011, pp. 7-44.
[91] C. V. Stan, C. M. Beavers, M. Kunz, and N. Tamura, "X-ray diffraction under extreme conditions at the Advanced Light Source," Quantum Beam Science, vol. 2, no. 1, p. 4, 2018.
[92] A. Ku, V. J. Facca, Z. Cai, and R. M. Reilly, "Auger electrons for cancer therapy–a review," EJNMMI radiopharmacy and chemistry, vol. 4, no. 1, pp. 1-36, 2019.
[93] I. Becerril-Romero et al., "Vitreous enamel as sodium source for efficient kesterite solar cells on commercial ceramic tiles," Solar Energy Materials and Solar Cells, vol. 154, pp. 11-17, 2016.
[94] Y. Sun et al., "Review on alkali element doping in Cu(In, Ga)Se2 thin films and solar cells," Engineering, vol. 3, no. 4, pp. 452-459, 2017.
[95] S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, and S. Niki, "Alkali incorporation control in Cu(In, Ga)Se2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency," Applied Physics Letters, vol. 93, no. 12, p. 124105, 2008.
[96] S. Ishizuka, A. Yamada, and S. Niki, "Efficiency enhancement of flexible CIGS solar cells using alkali-silicate glass thin layers as an alkali source material," in 2009 34th IEEE Photovoltaic Specialists Conference (PVSC), 2009: IEEE, pp. 002349-002353.
[97] Y. Wang, S. Lv, and Z. Li, "Review on incorporation of alkali elements and their effects in Cu(In, Ga)Se2 solar cells," Journal of Materials Science & Technology, vol. 96, pp. 179-189, 2022.
[98] U. Gupta et al., "Characterization of few-layer 1T-MoSe2 and its superior performance in the visible-light induced hydrogen evolution reaction," APL Materials, vol. 2, no. 9, p. 092802, 2014.
[99] F. Khavari, J. Keller, J. K. Larsen, K. V. Sopiha, T. Törndahl, and M. Edoff, "Comparison of Sulfur Incorporation into CuInSe2 and CuGaSe2 Thin‐Film Solar Absorbers," physica status solidi (a), vol. 217, no. 22, p. 2000415, 2020.
[100] Y. Lai et al., "Effects of Cu/In ratio of electrodeposited precursor on post-sulfurization process in fabricating quaternary CuIn(S, Se)2 thin films," Applied surface science, vol. 257, no. 20, pp. 8360-8365, 2011.
[101] S. S. Hegedus and W. N. Shafarman, "Thin‐film solar cells: device measurements and analysis," Progress in Photovoltaics: Research and Applications, vol. 12, no. 2‐3, pp. 155-176, 2004.
[102] A. Niemegeers and M. Burgelman, "Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells," Journal of applied Physics, vol. 81, no. 6, pp. 2881-2886, 1997.
[103] S. S. Hegedus and B. E. McCandless, "CdTe contacts for CdTe/CdS solar cells: effect of Cu thickness, surface preparation and recontacting on device performance and stability," Solar energy materials and solar cells, vol. 88, no. 1, pp. 75-95, 2005.
[104] K. Wang et al., "Thermally evaporated Cu2ZnSnS4 solar cells," Applied Physics Letters, vol. 97, no. 14, p. 143508, 2010.
[105] M. Bär, S. Nishiwaki, L. Weinhardt, S. Pookpanratana, W. Shafarman, and C. Heske, "Electronic level alignment at the deeply buried absorber/Mo interface in chalcopyrite-based thin film solar cells," Applied Physics Letters, vol. 93, no. 4, p. 042110, 2008.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *