|
[1] Snyder, G. J., & Toberer, E. S. (2011). Complex thermoelectric materials. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group (pp. 101-110). [2] Jien-Wei, Y. E. H. (2006). Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 31(6), 633-648. [3] Hu, L., Zhang, Y., Wu, H., Li, J., Li, Y., Mckenna, M., ... & Zeng, X. (2018). Entropy Engineering of SnTe: Multi‐Principal‐Element Alloying Leading to Ultralow Lattice Thermal Conductivity and State‐of‐the‐Art Thermoelectric Performance. Advanced Energy Materials, 8(29), 1802116. [4] Fan, Z., Wang, H., Wu, Y., Liu, X., & Lu, Z. (2017). Thermoelectric performance of PbSnTeSe high-entropy alloys. Materials Research Letters, 5(3), 187-194. [5] Li, J., Zhang, X., Chen, Z., Lin, S., Li, W., Shen, J., ... & Pei, Y. (2018). Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2(5), 976-987. [6] Zheng, Z., Su, X., Deng, R., Stoumpos, C., Xie, H., Liu, W., ... & Tang, X. (2018). Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. Journal of the American Chemical Society, 140(7), 2673-2686. [7] Tan, Q., Zhao, L. D., Li, J. F., Wu, C. F., Wei, T. R., Xing, Z. B., & Kanatzidis, M. G. (2014). Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. Journal of Materials Chemistry A, 2(41), 17302-17306. [8] Shafique, A., & Shin, Y. H. (2017). Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds. Scientific reports, 7(1), 1-10. [9] Mclennan, S. M. (2018). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In Geochemistry and mineralogy of rare earth elements (pp. 169-200). De Gruyter. [10] LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C., & Goodson, K. E. (2014). Material and manufacturing cost considerations for thermoelectrics. Renewable and Sustainable Energy Reviews, 32, 313-327. [11] Li, J., Chen, Z., Zhang, X., Sun, Y., Yang, J., & Pei, Y. (2017). Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides. NPG Asia Materials, 9(3), e353-e353. [12] Pei, Y., LaLonde, A. D., Wang, H., & Snyder, G. J. (2012). Low effective mass leading to high thermoelectric performance. Energy & Environmental Science, 5(7), 7963-7969. [13] Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., & Snyder, G. J. (2011). Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473(7345), 66-69. [14] Chen, Z., Zhang, X., & Pei, Y. (2018). Manipulation of phonon transport in thermoelectrics. Advanced Materials, 30(17), 1705617. [15] Biswas, K., He, J., Blum, I. D., Wu, C. I., Hogan, T. P., Seidman, D. N., ... & Kanatzidis, M. G. (2012). High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 489(7416), 414-418. [16] Liu, R., Chen, H., Zhao, K., Qin, Y., Jiang, B., Zhang, T., ... & Chen, L. (2017). Entropy as a gene‐like performance indicator promoting thermoelectric materials. Advanced Materials, 29(38), 1702712. [17] Jiang, B., Yu, Y., Cui, J., Liu, X., Xie, L., Liao, J., ... & He, J. (2021). High-entropy-stabilized chalcogenides with high thermoelectric performance. Science, 371(6531), 830-834. [18] Shafeie, S., Guo, S., Hu, Q., Fahlquist, H., Erhart, P., & Palmqvist, A. (2015). High-entropy alloys as high-temperature thermoelectric materials. Journal of Applied Physics, 118(18), 184905. [19] Wang, X., Yao, H., Zhang, Z., Li, X., Chen, C., Yin, L., ... & Zhang, Q. (2021). Enhanced thermoelectric performance in high entropy alloys Sn0. 25Pb0. 25Mn0. 25Ge0. 25Te. ACS Applied Materials & Interfaces, 13(16), 18638-18647. [20] Okamoto, H. (2000). Ge-Te (germanium-tellurium). Journal of Phase Equilibria and Diffusion, 5(21), 496-496. [21] Perumal, S., Roychowdhury, S., & Biswas, K. (2016). High performance thermoelectric materials and devices based on GeTe. Journal of Materials Chemistry C, 4(32), 7520-7536. [22] Li, J., Zhang, X., Wang, X., Bu, Z., Zheng, L., Zhou, B., ... & Pei, Y. (2018). High-performance GeTe thermoelectrics in both rhombohedral and cubic phases. Journal of the American Chemical Society, 140(47), 16190-16197. [23] Tung, Y. W., & Cohen, M. L. (1969). Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Physical Review, 180(3), 823. [24] Li, J., Chen, Z., Zhang, X., Yu, H., Wu, Z., Xie, H., ... & Pei, Y. (2017). Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics. Advanced Science, 4(12), 1700341. [25] Pei, Y., LaLonde, A., Iwanaga, S., & Snyder, G. J. (2011). High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 4(6), 2085-2089. [26] Samanta, M., & Biswas, K. (2017). Low thermal conductivity and high thermoelectric performance in (GeTe)1–2 x(GeSe)x(GeS)x: competition between solid solution and phase separation. Journal of the American Chemical Society, 139(27), 9382-9391. [27] Zhang, X., & Zhao, L. D. (2015). Thermoelectric materials: Energy conversion between heat and electricity. Journal of Materiomics, 1(2), 92-105. [28] Gomes, L. C., & Carvalho, A. (2015). Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Physical Review B, 92(8), 085406. [29] Zhang, X., Shen, J., Lin, S., Li, J., Chen, Z., Li, W., & Pei, Y. (2016). Thermoelectric properties of GeSe. Journal of Materiomics, 2(4), 331-337. [30] Wei, T. R., Tan, G., Zhang, X., Wu, C. F., Li, J. F., Dravid, V. P., ... & Kanatzidis, M. G. (2016). Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe. Journal of the American Chemical Society, 138(28), 8875-8882. [31] Perumal, S., Roychowdhury, S., Negi, D. S., Datta, R., & Biswas, K. (2015). High thermoelectric performance and enhanced mechanical stability of p-type Ge1–x Sb xTe. Chemistry of Materials, 27(20), 7171-7178. [32] Srinivasan, B., Gautier, R., Gucci, F., Fontaine, B., Halet, J. F., Cheviré, F., ... & Bureau, B. (2018). Impact of coinage metal insertion on the thermoelectric properties of GeTe solid-state solutions. The Journal of Physical Chemistry C, 122(1), 227-235. [33] Doak, J. W., & Wolverton, C. (2012). Coherent and incoherent phase stabilities of thermoelectric rocksalt IV-VI semiconductor alloys. Physical Review B, 86(14), 144202. [34] Girard, S. N., He, J., Li, C., Moses, S., Wang, G., Uher, C., ... & Kanatzidis, M. G. (2010). In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. Nano letters, 10(8), 2825-2831. [35] Perumal, S., Roychowdhury, S., & Biswas, K. (2016). Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge1− xBixTe. Inorganic Chemistry Frontiers, 3(1), 125-132. [36] Li, J., Zhang, X., Lin, S., Chen, Z., & Pei, Y. (2017). Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chemistry of Materials, 29(2), 605-611. [37] Acharyya, P., Roychowdhury, S., Samanta, M., & Biswas, K. (2020). Ultralow Thermal Conductivity, Enhanced Mechanical Stability, and High Thermoelectric Performance in (GeTe)1–2x(SnSe)x(SnS)x. Journal of the American Chemical Society, 142(48), 20502-20508. [38] Guo, S., Hu, Q., Ng, C., & Liu, C. T. (2013). More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics, 41, 96-103. [39] Qin, Y., Xiao, Y., & Zhao, L. D. (2020). Carrier mobility does matter for enhancing thermoelectric performance. APL Materials, 8(1), 010901. [40] Yuan, K., Sun, Z., Zhang, X., & Tang, D. (2019). Tailoring phononic, electronic, and thermoelectric properties of orthorhombic GeSe through hydrostatic pressure. Scientific reports, 9(1), 1-12. [41] Liu, Y., Cao, K., Liu, J., Zhang, Z., Ji, J., Wang, F., & Li, Z. (2019). Electrodeposition of copper-doped SnS thin films and their electric transmission properties control for thermoelectric enhancement. Journal of Materials Science: Materials in Electronics, 30(17), 15880-15888. [42] Liu, W. D., Shi, X. L., Lin, Z. J., Sun, Q., Han, G., Chen, Z. G., & Zou, J. (2020). Morphology and texture engineering enhancing thermoelectric performance of solvothermal synthesized ultralarge SnS microcrystal. ACS Applied Energy Materials, 3(3), 2192-2199. [43] Yan, M., Tan, X., Huang, Z., Liu, G., Jiang, P., & Bao, X. (2018). Synergetic optimization of electronic and thermal transport for high-performance thermoelectric GeSe–AgSbTe2 alloy. Journal of Materials Chemistry A, 6(18), 8215-8220. [44] Duan, S., Yin, Y., Liu, G. Q., Man, N., Cai, J., Tan, X., ... & Jiang, J. (2021). Anomalous Thermopower and High ZT in GeMnTe2 Driven by Spin’s Thermodynamic Entropy. Research, 2021. [45] Kim, H. S., Gibbs, Z. M., Tang, Y., Wang, H., & Snyder, G. J. (2015). Characterization of Lorenz number with Seebeck coefficient measurement. APL materials, 3(4), 041506.
|