帳號:guest(3.16.78.46)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳子凌
作者(外文):Chen, Tzu-Ling
論文名稱(中文):鋁鉻鈮鈦硼多元氮化物塗層的機械和高溫磨耗性質評估
論文名稱(外文):Mechanical and High Temperature Tribological Properties of (AlCrNbTiB)N Multicomponent Nitride Coatings
指導教授(中文):張守一
杜正恭
洪雪行
指導教授(外文):Chang, Shou-Yi
Duh, Jenq-Gong
Hung, Hsueh-Hsing
口試委員(中文):陳柏宇
陳永逸
蔡哲瑋
口試委員(外文):Chen, Po-Yu
Chen, Yung-I
Tsai, che-wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:109030510
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:106
中文關鍵詞:多元氮化物薄膜硬度磨耗高溫
外文關鍵詞:CoatingsHardnessTribologicalmodulus
相關次數:
  • 推薦推薦:0
  • 點閱點閱:237
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
金屬切削加工主要以添加潤滑劑的濕式加工進行的,對於工件的使用壽命有著重大幫助。然而潤滑劑在高溫切削加工中會產生黏性並揮發,失去保護工件的作用。為此,以不使用潤滑劑的乾式切削獲得重大關注。藉由在工件表面鍍附硬質保護膜以改善其特性和提升其工件壽命被廣為使用於工業領域中。有鑑於此,本研究之目的為鍍製全新多元合金氮化物薄膜,透過調整硼元素含量,以製備具有優異機械強度和高溫耐磨性之薄膜。
本研究乃通過反應射頻磁控濺射鍍製多元合金氮化物薄膜,以改變硼靶材功率並固定多元合金靶材功率,製備不同硼含量之多元合金氮化物薄膜。隨著硼含量的增加,薄膜結構從柱狀結構變為緻密結構。與無硼塗層相比,硼摻雜使薄膜硬度提高了20%。在硼含量為 3.3 at.% 時,薄膜硬度和楊氏模量分別為 31.1 GPa 和 264.4 GPa。強化效果歸因於緻密結構、缺陷密度增加、晶粒細化和固溶強化。
此外,在室溫磨損試驗中,薄膜具有與基板相似的楊氏模量,減少磨損過程中出現的裂紋,從而降低了磨損率。高溫700 °C 磨損試驗結果顯示,含硼薄膜之磨損率降低三倍。
綜上所述,本研究透過鍍製新型多元氮化薄膜,其表現出優異機械性能和耐磨性,對高溫耐磨應用中具有廣闊的應用前景。另外,硼摻雜有效地增加薄膜機械性能和耐磨性,此優點可應用於未來的抗磨材料。
This study successfully fabricated AlCrNbTiBN coatings with different boron contents on Stainless Steel 304 and Si (100) substrates by reactive radio frequency magnetron sputtering. As the boron content increases, the coating structure changes from a typical columnar structure to a dense, featureless structure. AlCrNbTiN coating is identified as a single FCC structure, while AlCrNbTiBN coatings are multiphase materials of amorphous BN and FCC structures. Boron occupies the interstitial site in the lattice, increasing lattice parameters. Meanwhile, boron doping increases the coating hardness by 20% as compared to the boron-free coating. At a boron content of 3.3 at.%, the hardness and Young's modulus of AlCrNbTiBN coating achieve 31.1 GPa and 264.4 GPa, respectively. The strengthening effect is attributed to dense structure, increased interstitial defect density, grain refinement, and solid solution strengthening. In the wear test at room temperature, the proximity of Young's modulus of AlCrNbTiBN and substrate reduces cracks occurred during wear, thereby reducing the wear rate. Coating without boron exhibited three times the wear rate than that of doped boron coatings in the wear test at 700 °C.
In this study, the multicomponent coating (AlCrNbTiBN) exhibits favorable mechanical and tribological properties. This implies that AlCrNbTiBN coatings present promising applicability in wear resistant applications at high temperatures. In addition, boron doping can increase the coatings mechanical properties and wear resistance, which can be applied to future anti-wear materials.
摘要 i
Abstract ii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation and Objectives 3
Chapter 2 Literature review 5
2.1 Surface engineering 5
2.2 Sputtering technique 9
2.2.1 Sputtering 9
2.2.2 Direct Current (DC) sputtering and Radio Frequency (RF) sputtering 12
2.2.3 Magnetron sputtering 15
2.3 Hard nitride coatings 17
2.3.1 Binary Nitride Hard coatings 17
2.3.2 Ternary Nitride Hard Coatings 18
2.3.3 Quaternary Nitride Hard Coatings 22
2.3.4 High Entropy Nitride Hard Coatings 24
2.4 Material characterizations of coating and Measuring technique 32
2.4.1 Chemical composition 32
2.4.2 Hardness and Young’s modulus 35
2.4.3 Wear mechanism 49
Chapter 3 Experimental procedures 62
3.1 Deposition fabrication 62
3.2 Measurements and analyses 63
3.2.1 Elemental composition analysis 63
3.2.2 Crystal structure 63
3.2.3 Cross-section and wear morphology 63
3.2.4 Mechanical properties measurement 64
3.2.5 Tribological performance measurement 65
Chapter 4 Results and discussion 66
4.1 Chemical composition 66
4.2 XRD identification, and microstructure of coatings 68
4.2.1 Crystal structure 68
4.2.2 Grain size of the coating 69
4.2.3 Film Microstructure 70
4.3 Residual stress 77
4.4 Hardness and Young’s modulus 80
4.5 Wear test 85
4.5.1 Wear test at room temperature 85
4.5.2 Wear test at high temperature 86
Chapter 5 Conclusions 95
References 97
[1] R. Melley, P. Wissner, (1997).
[2] T. Ueda, M. Al Huda, K. Yamada, K. Nakayama, H. Kudo, CIRP Annals, 48 (1999) 63-66.
[3] W. Wang, Surface and Coatings Technology, 177 (2004) 12-17.
[4] W.-L. Lo, S.-Y. Hsu, Y.-C. Lin, S.-Y. Tsai, Y.-T. Lai, J.-G. Duh, Surface and Coatings Technology, 401 (2020) 126247.
[5] K. Holmberg, A. Erdemir, Tribology International, 135 (2019) 389-396.
[6] W.J. Bartz, Tribology international, 31 (1998) 35-47.
[7] W. Huai, C. Zhang, S. Wen, Friction, 9 (2021) 1660-1672.
[8] J. Herdan, Lubrication Science, 9 (1997) 161-172.
[9] K. Holmberg, P. Andersson, A. Erdemir, Tribology international, 47 (2012) 221-234.
[10] H. Ichimura, I. Ando, Surface and Coatings Technology, 145 (2001) 88-93.
[11] J.-W. Lee, J.-G. Duh, J.-H. Wang, Surface and Coatings Technology, 168 (2003) 223-230.
[12] K.V. Chauhan, S.K. Rawal, Procedia Technology, 14 (2014) 430-437.
[13] C.-C. Chang, H.-W. Chen, J.-W. Lee, J.-G. Duh, Surface and Coatings Technology, 284 (2015) 273-280.
[14] H.C. Barshilia, N. Selvakumar, B. Deepthi, K. Rajam, Surface and Coatings Technology, 201 (2006) 2193-2201.
[15] Y. Chim, X. Ding, X. Zeng, S. Zhang, Thin Solid Films, 517 (2009) 4845-4849.
[16] W. Chen, T. Hu, Y. Hong, D. Zhang, X. Meng, Surface and Coatings Technology, 404 (2020) 126429.
[17] Y.-Y. Chang, C.-H. Chung, Z.-H. Tsai, J.-M. Tsai, Surface and Coatings Technology, 432 (2022) 128097.
[18] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Advanced engineering materials, 6 (2004) 299-303.
[19] W. Li, P. Liu, P.K. Liaw, Materials Research Letters, 6 (2018) 199-229.
[20] X.H. Yan, J.S. Li, W.R. Zhang, Y. Zhang, Materials Chemistry and Physics, 210 (2018) 12-19.
[21] N. Pandey, S. Tripathi, B. Kumar, D. Dwivedi, in: 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), IEEE, 2018, pp. 1-6.
[22] B. Bhushan, Overview of Coating Materials, Surface Treatments, and Screening Techniques for Tribological Applications--Part 1: Coating Materials and Surface Treatments, ASTM International, 1987.
[23] K.N. Strafford, Surface engineering: processes and applications, Routledge, 2018.
[24] H. Holleck, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4 (1986) 2661-2669.
[25] I. Langmuir, L. Tonks, Phys. Rev, 34 (1929) 876.
[26] A. Grill, Cold plasma in materials fabrication, IEEE Press, New York, 1994.
[27] P. Barna, in, Institute of Physics Publishing: Bristol, UK, 1992, pp. 295-310.
[28] R. Behrisch, K. Wittmaack, Sputtering by particle bombardment, Springer-Verlag New York, 1981.
[29] L. Tonks, I. Langmuir, Physical review, 34 (1929) 876.
[30] R.M.d.S. Martins, Ph. D. Thesis, (2008).
[31] L.-Y. Chen, W.-H. Chen, J.-J. Wang, F.C.-N. Hong, Y.-K. Su, Applied physics letters, 85 (2004) 5628-5630.
[32] R. Dhakal, Y. Huh, D. Galipeau, X. Yan, Solar Cells—New Aspects and Solutions, (2011).
[33] C.-T. Liu, M.-C. Lai, C.-C. Hwang, C.-H. Tu, L.-Y. Liu, Y.-W. Hsu, IEEE Transactions on Magnetics, 45 (2009) 4391-4394.
[34] F. Wang, H. Zhao, J. Liang, T. Li, Y. Luo, S. Lu, X. Shi, B. Zheng, J. Du, X. Sun, Journal of Materials Chemistry A, 8 (2020) 20260-20285.
[35] J. Doong, J. Duh, S. Tsai, Surf. Coatings Technol, 58 (1993) 151-155.
[36] C.-H. Ma, J.-H. Huang, H. Chen, Surface and Coatings Technology, 200 (2006) 3868-3875.
[37] E. Santecchia, A. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, S. Spigarelli, Ceramics international, 41 (2015) 10349-10379.
[38] S. PalDey, S. Deevi, Materials Science and Engineering: A, 342 (2003) 58-79.
[39] E. Vera, M. Vite, R. Lewis, E. Gallardo, J. Laguna-Camacho, Wear, 271 (2011) 2116-2124.
[40] I. Milošev, H.-H. Strehblow, B. Navinšek, Surface and Coatings Technology, 74 (1995) 897-902.
[41] J. Lin, B. Mishra, J. Moore, W. Sproul, Surface and Coatings Technology, 202 (2008) 3272-3283.
[42] M. Brizuela, A. Garcia-Luis, I. Braceras, J. Oñate, J. Sánchez-López, D. Martínez-Martínez, C. López-Cartes, A. Fernández, Surface and Coatings Technology, 200 (2005) 192-197.
[43] G. Zhang, L. Wang, P. Yan, Q. Xue, Journal of alloys and compounds, 486 (2009) 227-232.
[44] V. Jahodova, X.-z. Ding, D.H. Seng, W. Gulbinski, P. Louda, Thin Solid Films, 544 (2013) 335-340.
[45] C.-H. Cheng, J.-W. Lee, L.-W. Ho, H.-W. Chen, Y.-C. Chan, J.-G. Duh, Surface and Coatings Technology, 206 (2011) 1711-1719.
[46] Q. Ma, F. Zhou, S. Gao, Z. Wu, Q. Wang, K. Chen, Z. Zhou, L.K.-Y. Li, Applied Surface Science, 377 (2016) 394-405.
[47] B. Rother, H. Kappl, Surface and Coatings Technology, 96 (1997) 163-168.
[48] K. Polychronopoulou, J. Neidhardt, C. Rebholz, M. Baker, M. O’Sullivan, A. Reiter, A. Gunnaes, K. Giannakopoulos, C. Mitterer, Journal of Materials Research, 23 (2008) 3048-3055.
[49] J. Wang, F. Cai, L. Fang, J. Zheng, S. Zhang, Vacuum, 196 (2022) 110726.
[50] M. Nose, W.-A. Chiou, T. Kawabata, Y. Hatano, K. Matsuda, Thin solid films, 523 (2012) 6-10.
[51] C. Tritremmel, R. Daniel, M. Lechthaler, H. Rudigier, P. Polcik, C. Mitterer, Surface and Coatings Technology, 213 (2012) 1-7.
[52] C. Hu, L. Chen, V. Moraes, Surface and Coatings Technology, 417 (2021) 127191.
[53] V. Novikov, N. Stepanov, S. Zherebtsov, G. Salishchev, Metals, 12 (2022) 847.
[54] C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.-P. Maria, Nature communications, 6 (2015) 1-8.
[55] J.-W. Yeh, Jom, 65 (2013) 1759-1771.
[56] J. Goldstein, Practical scanning electron microscopy: electron and ion microprobe analysis, Springer Science & Business Media, 2012.
[57] C. Merlet, Microchimica acta, 114 (1994) 363-376.
[58] M. Ezzahmouly, A. Elmoutaouakkil, M. Ed-Dhahraouy, H. Khallok, A. Elouahli, A. Mazurier, A. ElAlbani, Z. Hatim, Heliyon, 5 (2019) e02557.
[59] G. Pharr, W. Oliver, Mrs Bulletin, 17 (1992) 28-33.
[60] X. Li, B. Bhushan, Materials characterization, 48 (2002) 11-36.
[61] A. Karimzadeh, S. R Koloor, M.R. Ayatollahi, A.R. Bushroa, M.Y. Yahya, Scientific reports, 9 (2019) 1-14.
[62] M.R. VanLandingham, J.S. Villarrubia, W.F. Guthrie, G.F. Meyers, in: Macromolecular symposia, Wiley Online Library, 2001, pp. 15-44.
[63] M.J. Haché, C. Cheng, Y. Zou, Journal of Materials Research, 35 (2020) 1051-1075.
[64] M. Morinaga, A quantum approach to alloy design: an exploration of material design and development based upon alloy design theory and atomization energy method, Elsevier, 2018.
[65] Z. Huda, Strengthening Mechanisms in Metals/Alloys, in: Mechanical Behavior of Materials, Springer, 2022, pp. 63-79.
[66] P. Patsalas, C. Charitidis, S. Logothetidis, Surface and Coatings Technology, 125 (2000) 335-340.
[67] O. Soroka, Strength of materials, 42 (2010) 287-296.
[68] J. Carneiro, V. Teixeira, S. Azevedo, Encyclopedia of Thermal Stresses. Dordrecht, Netherlands: Springer, (2014) 4222-4231.
[69] F. Lomello, F. Sanchette, F. Schuster, M. Tabarant, A. Billard, Surface and Coatings Technology, 224 (2013) 77-81.
[70] P. Ferro, H. Porzner, A. Tiziani, F. Bonollo, Modelling and Simulation in Materials Science and Engineering, 14 (2006) 117.
[71] J.-D. Kamminga, T.H. De Keijser, R. Delhez, E. Mittemeijer, Journal of Applied Physics, 88 (2000) 6332-6345.
[72] F. d'Heurle, J. Harper, Thin Solid Films, 171 (1989) 81-92.
[73] A. Pogrebnjak, V. Beresnev, Nanocomposites—New Trends and Developments, (2012) 123-160.
[74] K.E. Sickafus, E.A. Kotomin, B.P. Uberuaga, Radiation effects in solids, Springer Science & Business Media, 2007.
[75] R. Liu, D. Li, Wear, 251 (2001) 956-964.
[76] K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, S. Varjus, J. Koskinen, Surface and Coatings Technology, 200 (2006) 3810-3823.
[77] E. Bousser, M. Benkahoul, L. Martinu, J. Klemberg-Sapieha, Surface and Coatings Technology, 203 (2008) 776-780.
[78] J. Musil, F. Kunc, H. Zeman, H. Polakova, Surface and Coatings Technology, 154 (2002) 304-313.
[79] B. Beake, V. Vishnyakov, A. Harris, Surface and Coatings Technology, 309 (2017) 671-679.
[80] B.D. Beake, Surface and Coatings Technology, (2022) 128272.
[81] A. Leyland, A. Matthews, Wear, 246 (2000) 1-11.
[82] G.W. Stachowiak, A.W. Batchelor, Engineering tribology, Butterworth-heinemann, 2013.
[83] K. Sadiq, M.A. Sim, R.A. Black, M.M. Stack, Lubricants, 8 (2020) 71.
[84] A. Gåård, N. Hallbäck, P. Krakhmalev, J. Bergström, Wear, 268 (2010) 968-975.
[85] D. Arnell, Mechanisms and laws of friction and wear, in: Tribology and Dynamics of Engine and Powertrain, Elsevier, 2010, pp. 41-72.
[86] A. Dréano, S. Fouvry, G. Guillonneau, Tribology International, 125 (2018) 128-140.
[87] S.-Y. Hsu, Y.-T. Lai, S.-Y. Chang, S.-Y. Tsai, J.-G. Duh, Surface and Coatings Technology, (2022) 128564.
[88] L. Raumann, D. Music, J.M. Schneider, Journal of Physics: Condensed Matter, 24 (2012) 155401.
[89] C.-L. Chang, C.-S. Huang, J.-Y. Jao, Surface and Coatings Technology, 205 (2011) 2730-2737.
[90] H.O. Pierson, Handbook of refractory carbides & nitrides: properties, characteristics, processing and applications, William Andrew, 1996.
[91] X. Lu, C. Zhang, X. Zhang, X. Cao, J. Kang, X. Sui, J. Hao, W. Liu, Ceramics International, 47 (2021) 27342-27350.
[92] H. Windischmann, Critical Reviews in Solid State and Material Sciences, 17 (1992) 547-596.
[93] J. Musil, Surface and Coatings Technology, 207 (2012) 50-65.
[94] H.-M. Tung, J.-H. Huang, D.-G. Tsai, C.-F. Ai, G.-P. Yu, Materials Science and Engineering: A, 500 (2009) 104-108.
[95] C. Godoy, E. Souza, M. Lima, J. Batista, Thin Solid Films, 420 (2002) 438-445.
[96] V. Teixeira, Vacuum, 64 (2002) 393-399.
[97] Y.-C. Lin, S.-Y. Hsu, R.-W. Song, W.-L. Lo, Y.-T. Lai, S.-Y. Tsai, J.-G. Duh, Surface and Coatings Technology, 403 (2020) 126417.
[98] S.N. Naik, S.M. Walley, Journal of Materials Science, 55 (2020) 2661-2681.
[99] S. Chen, D. Luo, G. Zhao, Physics Procedia, 50 (2013) 163-168.
[100] K. Tosha, in: Asia-Pacific Forum on Precision Surface Finishing and Deburring Technology, 2002, pp. 48-54.
[101] I. Asempah, J. Xu, L. Yu, H. Ju, F. Wu, H. Luo, Surface Engineering, 35 (2019) 701-709.
[102] J. Patscheider, T. Zehnder, M. Diserens, Surface and Coatings Technology, 146 (2001) 201-208.
[103] L. Zheng, S. Ramalingam, Surface and Coatings Technology, 81 (1996) 52-71.
[104] C. Rebholz, A. Leyland, P. Larour, C. Charitidis, S. Logothetidis, A. Matthews, Surface and Coatings Technology, 116 (1999) 648-653.
[105] J. Lian, S.-W. Lee, L. Valdevit, M.I. Baskes, J.R. Greer, Scripta Materialia, 68 (2013) 261-264.
[106] P. Valat-Villain, J. Durinck, P. Renault, Journal of Nanomaterials, 2017 (2017).
[107] S. Miyake, S. Watanabe, M. Murakawa, R. Kaneko, T. Miyato, Thin Solid Films, 212 (1992) 262-266.
[108] H. Zhang, Y.X. Xu, Y. Chen, B. Peng, T. Wei, F. Zhang, H. Li, Q. Wang, Corrosion Science, 203 (2022) 110347.
[109] M. Becton, X. Wang, Physical Chemistry Chemical Physics, 17 (2015) 21894-21901.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *