帳號:guest(3.145.57.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周書毅
作者(外文):Chou, Shu-Yi
論文名稱(中文):利用Poisson-Bikerman熱力學模型預測混合活性係數及其應用
論文名稱(外文):Predict Mixed Activity Coefficients with Poisson-Bikerman Thermodynamic model
指導教授(中文):李金龍
指導教授(外文):Li, Chin-Lung
口試委員(中文):劉晉良
陳仁純
口試委員(外文):Liu, Jinn-Liang
Chen, Ren-Chuen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計算與建模科學研究所
學號:109026504
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:48
中文關鍵詞:活性係數混合溶劑
外文關鍵詞:Poisson-BikermanActivity CoefficientsMixed solvent
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在此研究中,我們利用近年所提出的卜瓦松-比克曼(Poisson-Bikerman) 分子熱力學模型推導電解質於混合溶劑中的德拜-休克爾活性係數公式。特別地,此模型探討離子與水的尺寸同時考慮粒子間的空隙,以及水的極化效應和離子-離子、離子-水在水溶液中的相關效應。在考慮水-甲醇混合溶劑的情況下,數值計算的成果分為兩部分。第一部分應用推導出的公式擬合三種1:1 電解質(NaF、NaCl、NaBr) 在不同混合溶劑濃度與固定溫度與壓力的條件下的平均活性係數,其結果很好的擬合實驗數據但在數據較少時對應的調整參數αmix1、αmix2、αmix3 會出現極值;第二部分預測了電解質在混合溶劑中的平均活性係數,我們透過計算兩種溶劑濃度下的調整參數αmix1、αmix2、αmix3 來預測在其他濃度時的活性係數。另外也透過該計算方式推導出一個彈性調整參數Δαi,使其在僅需擬合電解質在純溶劑中的實驗數據便能夠預測在混合溶劑中的平均活性係數。因此,與在水溶液中需要3 個調整參數的情況相比,我們在這最多僅需增加一個參數便可得到混合溶劑中的活性係數。
We derive a generalized Debye-Hückel equation of electrolytes in mixed solvent system by applying Poisson-Bikerman molecular thermodynamic model proposed recently. Especially, the model accounts for the size effect of ion and water molecules of any volume and shape with interstitial voids, the polarization effect of water, and ion-ion and ion-water correlation effects in multicomponent aqueous electrolytes. In the case of water-methanol mixed solvent, the results of numerical simulation could be organized into two parts. First part: We apply the formula to fit the mean activity coefficients of NaF, NaCl, and NaBr in different composition proportion of water-methanol mixed solvent at fixed temperature 298.15 K and pressure 1.01 bar, and the results are in good agreement with the experimental data but might occur extreme value on adjustable parameters (αmix1 , αmix2 , and αmix3 ) in insufficient data or only low concentration. Second part: We predict activity coefficients by combing adjustable parameters of two groups of experimental data. Moreover, we design a flexible, adjustable parameter Δαi to predict activity coefficients of mixture from fitting experimental data of electrolyte in pure solvent. Consequently, compared with aqueous system, we obtain the ion activity in mixed solvent by adding at most one more parameter.
Acknowledgements ------------------------------------------------- i
摘要 ------------------------------------------------------------- ii
Abstract --------------------------------------------------------- iii
Contents --------------------------------------------------------- iv
1 Introduction --------------------------------------------------- 1
2 Thermodynamic model with the Poisson-Bikerman theory ----------- 3
2.1 Fourth-order Poisson–Bikerman theory for mixed solvent ------- 3
2.2 Linear fourth-order Poisson–Bikerman equation ---------------- 4
2.3 Activity Coefficient Formula with Linear 4PBik equation ------ 11
2.3.1 General solutions of linear 4PBik equation ----------------- 11
2.3.2 Unique solution of linear 4PBik equation ------------------- 12
2.3.3 General Debye-Hückel equation ------------------------------ 14
3 Numerical Simulations ------------------------------------------ 16
3.1 Parameter Design and Unit Transformation --------------------- 16
3.1.1 Dielectric constant ---------------------------------------- 16
3.1.2 Born radius and Born energy -------------------------------- 17
3.1.3 Conversion of concentration units -------------------------- 18
3.1.4 Solvent density and density gradient ----------------------- 18
3.2 The Fitting Result of 1:1 Electrolytes ----------------------- 20
3.3 The Prediction Result of 1:1 Electrolytes -------------------- 23
3.3.1 The first type formula ------------------------------------- 23
3.3.2 The second type formula ------------------------------------ 25
4 Conclusions ---------------------------------------------------- 31
References ------------------------------------------------------- 32
Appendix --------------------------------------------------------- 34
[1] A. S. Chohan and E. B. Davidow, “Clinical pharmacology and administration of fluid, electrolyte, and blood component solutions,” Veterinary anesthesia and analgesia, p. 386, 2015.
[2] R. J. Maughan, “Fluid and electrolyte loss and replacement in exercise,” Journal of Sports Sciences, vol. 9, no. S1, pp. 117–142, 1991.
[3] S. Taniewska-Osi´nska, “Electrolytes in binary solvents: An experimental approach,” Chemical Society Reviews, vol. 22, no. 3, pp. 205–212, 1993.
[4] Y. Dai, F. Zheng, B. Xia, P. Cui, Y. Wang, and J. Gao, “Application of mixed solvent to achieve an energy-saving hybrid process including liquid–liquid extraction and heterogeneous azeotropic distillation,” Industrial & Engineering Chemistry Research, vol. 58,
no. 6, pp. 2379–2388, 2019.
[5] F. Hernández-Luis, M. V. Vázquez, and M. A. Esteso, “Activity coefficients for naf in methanol-water and ethanol-water mixtures at 25 c,” Journal of molecular liquids, vol. 108, no. 1-3, pp. 283–301, 2003.
[6] E. Hückel and P. Debye, “The theory of electrolytes: I. lowering of freezing point and related phenomena,” Phys. Z, vol. 24, no. 185-206, p. 1, 1923.
[7] M. Gouy, “Sur la constitution de la charge électrique à la surface d’un électrolyte,” J. Phys. Theor. Appl., vol. 9, no. 1, pp. 457–468, 1910.
[8] D. L. Chapman, “Li. a contribution to the theory of electrocapillarity,” The London, Edinburgh, and Dublin philosophical magazine and journal of science, vol. 25, no. 148, pp. 475–481, 1913.
[9] R. H. Stokes and R. A. Robinson, Electrolyte Solutions: The Measuremwnt and Interpretation of Conductance, Chemical Potential and Diffusion in Solutions of Si. Butterworth Scientific, London, 1959.
[10] W. R. Fawcett, Liquids, solutions, and interfaces: from classical macroscopic descriptions to modern microscopic details. Oxford University Press, 2004.
[11] J. H. Vera and G. Wilczek-Vera, Classical Thermodynamics of Fluid Systems: Principles and Applications. Crc Press, 2016.
[12] G. N. Lewis, M. Randall, K. S. Pitzer, and L. Brewer, Thermodynamics. Courier Dover Publications, 2020.
[13] C. Christensen, B. Sander, A. Fredenslund, and P. Rasmussen, “Towards the extensionof unifac to mixtures with electrolytes,” Fluid Phase Equilibria, vol. 13, pp. 297–309, 1983.
[14] D. S. Abrams and J. M. Prausnitz, “Statistical thermodynamics of liquid mixtures: a new expression for the excess gibbs energy of partly or completely miscible systems,” AIChE Journal, vol. 21, no. 1, pp. 116–128, 1975.
[15] J.-L. Liu, “Numerical methods for the poisson–fermi equation in electrolytes,” Journal of Computational Physics, vol. 247, pp. 88–99, 2013.
[16] J.-L. Liu, D. Xie, and B. Eisenberg, “Poisson-fermi formulation of nonlocal electrostatics in electrolyte solutions,” Computational and Mathematical Biophysics, vol. 5, no. 1, pp. 116–124, 2017.
[17] J.-L. Liu and C.-L. Li, “A generalized debye-hückel theory of electrolyte solutions,” AIP Advances, vol. 9, no. 1, p. 015214, 2019.
[18] C.-L. Li and J.-L. Liu, “Generalized debye–hückel equation from poisson–bikerman theory,” SIAM Journal on Applied Mathematics, vol. 80, no. 5, pp. 2003–2023, 2020.
[19] J.-L. Liu and B. Eisenberg, “Poisson-nernst-planck-fermi theory for modeling biological ion channels,” The Journal of chemical physics, vol. 141, no. 22, p. 12B640_1, 2014.
[20] J.-L. Liu, D. Xie, and B. Eisenberg, “Poisson-fermi formulation of nonlocal electrostatics in electrolyte solutions,” Computational and Mathematical Biophysics, vol. 5, no. 1, pp. 116–124, 2017.
[21] B. P. Lee and M. E. Fisher, “Density fluctuations in an electrolyte from generalized debyehueckel theory,” Physical review letters, vol. 76, no. 16, p. 2906, 1996.
[22] W. W. Rudolph and G. Irmer, “Hydration of the calcium (ii) ion in an aqueous solution of common anions (clo 4-, cl-, br-, and no 3-),” Dalton Transactions, vol. 42, no. 11, pp. 3919–3935, 2013.
[23] M. Valiskó and D. Boda, “Unraveling the behavior of the individual ionic activity coefficients on the basis of the balance of ion–ion and ion–water interactions,” The Journal of Physical Chemistry B, vol. 119, no. 4, pp. 1546–1557, 2015.
[24] C. P. Kelly, C. J. Cramer, and D. G. Truhlar, “Aqueous solvation free energies of ions and ion- water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton,” The Journal of Physical Chemistry B, vol. 110, no. 32, pp. 16066–16081, 2006.
[25] J. R. Pliego Jr and E. L. Miguel, “Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster-continuum approach,” The Journal of Physical Chemistry B, vol. 117, no. 17, pp. 5129–5135, 2013.
[26] J. Barthel, R. Neueder, and G. Lauermann, “Vapor pressures of non-aqueous electrolyte solutions. part 1. alkali metal salts in methanol,” Journal of solution chemistry, vol. 14, no. 9, pp. 621–633, 1985.
[27] S. Reiser, M. Horsch, and H. Hasse, “Density of methanolic alkali halide salt solutions by experiment and molecular simulation,” Journal of Chemical & Engineering Data, vol. 60, no. 6, pp. 1614–1628, 2015.
[28] A. Basili, P. R. Mussini, T. Mussini, and S. Rondinini, “Thermodynamics of the cell:{NaxHg1- x| NaCl (m)| AgCl| Ag} in (methanol+ water) solvent mixtures,” The Journal of Chemical Thermodynamics, vol. 28, no. 8, pp. 923–933, 1996.
[29] S. Han and H. Pan, “Thermodynamics of the sodium bromide-methanol-water and sodium bromide-ethanol-water two ternary systems by the measurements of electromotive force at 298. 15k,” Fluid Phase Equilibria, vol. 83, pp. 261–270, 1993.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *