|
1. M. Tan and L. E. Quoc. Efficientnet: Rethinking model scaling for convolutional neural networks. In: International conference on machine learning. PMLR, 2019. p. 6105-6114.
2. Ronneberger, O., Fischer, P., \& Brox, T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015. p. 234-241.
3. Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., \& Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In: Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, 2018. p. 3-11.
4. Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., \& Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV). 2018. p. 801-818.
5. Long, J., Shelhamer, E., \& Darrell, T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. p. 3431-3440.
6. Yu, F., \& Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122, 2015.
7. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., \& Yuille, A. L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 2017, 40.4: 834-848.
8. Chen, L. C., Papandreou, G., Schroff, F., \& Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.
9. Baheti, B., Innani, S., Gajre, S., \& Talbar, S. Eff-unet: A novel architecture for semantic segmentation in unstructured environment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020. p. 358-359.
10. Comma.ai:https://github.com/commaai/
11. Deep Learning Containers File:https://cloud.google.com/deep-learning-containers/docs/overview
12. Adaptive Cruise Control:https://mycardoeswhat.org/safety-features/adaptive-cruise-control/
13. Comma10k:https://github.com/commaai/comma10k
14. Mapillary Vistas:https://www.mapillary.com/dataset/vistas
15. Cityscapes dataset:https://www.cityscapes-dataset.com/
16. Qualcomm snapdragon S821: https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-821-mobile-platform
17. Snapdragon Neural Processing Engine: https://developer.qualcomm.com/sites/default/files/docs/snpe/overview.html
18. Y. Yousfi:https://yassineyousfi.github.io/
19. Eff-UNet:https://github.com/YassineYousfi/comma10k-baseline
20. Imagenet:https://www.image-net.org/
21. Pytorch:https://pytorch.org/
22. Semantic segmentation:https://paperswithcode.com/task/semantic-segmentation
23. Pytorch lightning:https://www.pytorchlightning.ai/
24. Albumentations:https://albumentations.ai/
25. Opencv:https://docs.opencv.org/4.x/index.html
26. Segmentation\_models.pytorch:https://github.com/qubvel/segmentation\_models.pytorch
27. P. Iakubovskii:https://github.com/qubvel
28. Up convolution:https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
29. cosine annealing learning rate: https://pytorch.org/docs/stable/generated/torch.optim.lr\_scheduler.CosineAnnealingLR.html |