帳號:guest(3.142.42.32)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳恒皓
作者(外文):Chen, Heng-Hao
論文名稱(中文):紊流中集體微中子震盪的線性不穩定性分析
論文名稱(外文):Linear instability analysis of collective neutrino oscillations under turbulent media fluctuation
指導教授(中文):吳孟儒
潘國全
指導教授(外文):Wu, Meng-Ru
Pan, Kuo-Chuan
口試委員(中文):楊湘怡
曾柏彥
口試委員(外文):Yang, Hsiang-Yi
Tseng, Po-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:109025701
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:60
中文關鍵詞:集體微中子震盪線性不穩定性分析紊流超新星
外文關鍵詞:Collective neutrino oscillationsLinear instability analysisTurbulenceSupernova
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在文獻 [1]中,Abbar博士提出了高傅立葉頻率的不穩定性會「泄漏」到較低
的頻率中,使得系統在小尺度到大尺度上普遍存在不穩定性。在本論文中,我
們擴展了對 [1]中所提出的效應的研究,並對其進行了深入探討。從非紊流系統
開始,其中不同的頻率並沒有耦合在一起,所以它們會依據自己所在的頻率獨
立演化,我們使用數值方法計算了這些非耦合系統,並通過 [2]的方法對其進
行了確認。然後,我們通過檢查計算的一致性確認了這種「泄漏」效應,並定
量地提供了紊流振幅與「泄漏」之間的關係。我們的結果表明:這種紊流耦合
系統的不穩定性增長率與非紊流系統相同。除了增長率之外,在「泄漏」發生
之前,系統在紊流耦合效應下的演化可以很好地由相應的非耦合系統和對應的
傅立葉頻率來預測。至於「泄漏」效應,雖然它僅在紊流耦合系統中出現。然
而,這只有在系統進入非線性階段時才會發生。因此,需要在非線性階段進行
完整的計算,以進一步探索「洩漏」效應是否能產生任何影響。
In [1], Dr. Abbar proposed that the instabilities at the higher Fourier modes would “leak” to lower modes thus making instabilities ubiquitous from small to large scales in the system. Here we extend the study of the system and the effect proposed in [1] and explore the system thoroughly. Starting from the non-turbulent system in which the modes are decoupled and evolve themselves independently, we calculate these non-coupled systems numerically and confirm them by following [2]. We verify this “leakage” effect by checking the consistency of the calculation, and we provide the relation between the amplitude of the turbulence and the “leakage” quantitatively. Our results show that the instability growth rate of this turbulentcoupled system is identical to the non-turbulent ones. Other than the growth rate, the evolution of the system under the turbulent-coupled effect could be well predicted by the non-coupled system with corresponding Fourier modes before the“leakage” occurs. For the “leakage” effect, it does emerge only in the turbulentcoupled system at later times. However, this happens only when the system has entered the non-linear regime. Thus, it requires a full calculation of the non-linear regime to further explore whether the “leakage” effect can produce any effect.
Contents
Abstract (Chinese) I
Acknowledgements (Chinese) II
Abstract III
Acknowledgements IV
Contents V
List of Figures VII
1 Introduction 1
2 Methodology 5
2.1 Density matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Turbulent media fluctuation formulation . . . . . . . . . . . . . . . 8
2.4 Linear instability analysis . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Set up of the system . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Linearize the equation of motion . . . . . . . . . . . . . . . . . . . . 10
2.7 Constant background medium . . . . . . . . . . . . . . . . . . . . . 11
2.8 Turbulent coupled equation . . . . . . . . . . . . . . . . . . . . . . 12
3 Results 15
3.1 Non-turbulent system . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Instability map of the non-turbulent system . . . . . . . . . 15
3.1.2 Analysis of the instability map . . . . . . . . . . . . . . . . . 18
3.2 Turbulent coupled system . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Consistency of the turbulent-coupled system . . . . . . . . . 22
3.2.2 “leakage” effect in the turbulent system . . . . . . . . . . . . 29
3.2.3 The peak of the eigen-shape and the eigen-value . . . . . . . 36
3.3 Turbulent coupled system in the z evolution . . . . . . . . . . . . . 38
3.3.1 Consistency of the |Qk| evolution in z . . . . . . . . . . . . . 38
3.3.2 Qkevolution under constant µ[km−1] . . . . . . . . . . . . . 40
3.3.3 |Qk| evolution under µ(z) = µ0 × e−0.3z[km−1] . . . . . . . . 50
3.4 z evolution under non-coupled and coupled system . . . . . . . . . . 52
4 Discussion and conclusion 55
Bibliography 57
[1] Sajad Abbar. Turbulence fingerprint on collective oscillations of supernova
neutrinos. Physical Review D, 103(4), Feb 2021.
[2] S. Chakraborty, R. S. Hansen, I. Izaguirre, and G.G. Raffelt. Self-induced
flavor conversion of supernova neutrinos on small scales. Journal of Cosmology
and Astroparticle Physics, 2016(01):028–028, jan 2016.
[3] John D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science Engineering, 9(3):90–95, 2007.
[4] Huaiyu Duan. Collective neutrino oscillations and spontaneous symmetry
breaking. International Journal of Modern Physics E, 24(09):1541008, sep
2015.
[5] John J. Cowan, Christopher Sneden, James E. Lawler, Ani Aprahamian,
Michael Wiescher, Karlheinz Langanke, Gabriel Mart´ınez-Pinedo, and
Friedrich-Karl Thielemann. Origin of the heaviest elements: The rapid
neutron-capture process. Rev. Mod. Phys., 93:015002, Feb 2021.
[6] R. L. Workman et al. Review of Particle Physics. PTEP, 2022:083C01, 2022.
[7] Francesco Capozzi and Ninetta Saviano. Neutrino flavor conversions in highdensity astrophysical and cosmological environments. Universe, 8(2):94, feb 2022.57
[8] Francesco Capozzi, Eleonora Di Valentino, Eligio Lisi, Antonio Marrone,
Alessandro Melchiorri, and Antonio Palazzo. Unfinished fabric of the three
neutrino paradigm. Phys. Rev. D, 104:083031, Oct 2021.
[9] S. P. Mikheev and A. Yu. Smirnov. Neutrino oscillations in a variable-density
medium and ν− bursts due to the gravitational collapse of stars, 2007.
[10] W. C. Haxton. Neutrino astrophysics. 2012.
[11] Supernova neutrinos: production, oscillations and detection 2016. La Rivista
del Nuovo Cimento, 39(102):1–112, Feb 2016.
[12] Irene Tamborra and Shashank Shalgar. New developments in flavor evolution
of a dense neutrino gas. Annual Review of Nuclear and Particle Science,
71(1):165–188, sep 2021.
[13] H. A. Bethe and J. R. Wilson. Revival of a stalled supernova shock by neutrino
heating. , 295:14–23, August 1985.
[14] George M. Fuller, R. Mayle, Bradley S. Meyer, and James R. Wilson. Can a
Closure Mass Neutrino Help Solve the Supernova Shock Reheating Problem?
, 389:517, April 1992.
[15] Jakob Ehring, Sajad Abbar, Hans-Thomas Janka, Georg Raffelt, and Irene
Tamborra. Fast neutrino flavor conversions can help and hinder neutrinodriven explosions, 2023.
[16] Zewei Xiong, Meng-Ru Wu, and Yong-Zhong Qian. Symmetry and bipolar
motion in collective neutrino flavor oscillations, 2023.
[17] Sean M. Couch and Christian D. Ott. THE ROLE OF TURBULENCE IN
NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVA EXPLOSIONS.
The Astrophysical Journal, 799(1):5, jan 2015.
58
[18] Lei Ma, Shashank Shalgar, and Huaiyu Duan. Matter parametric neutrino
flavor transformation through rabi resonances. Physical Review D, 98(10),
nov 2018.
[19] P.I. Krastev and A.Yu. Smirnov. Parametric effects in neutrino oscillations.
Physics Letters B, 226(3):341–346, 1989.
[20] General kinetic description of relativistic mixed neutrinos. Nuclear Physics
B, 406(1):423–451, 1993.
[21] P. Strack and A. Burrows. Generalized boltzmann formalism for oscillating
neutrinos. Physical Review D, 71(9), may 2005.
[22] Huaiyu Duan, George M. Fuller, J. Carlson, and Yong-Zhong Qian. Simulation of coherent nonlinear neutrino flavor transformation in the supernova
environment: Correlated neutrino trajectories. Phys. Rev. D, 74:105014, Nov
2006.
[23] Christian Y. Cardall. Liouville equations for neutrino distribution matrices.
Physical Review D, 78(8), oct 2008.
[24] L. Wolfenstein. Neutrino oscillations in matter. Phys. Rev. D, 17:2369–2374,
May 1978.
[25] Uriel Frisch. Turbulence: The Legacy of A.N. Kolmogorov. 11 1995.
[26] Ernazar Abdikamalov, Christian D. Ott, David Radice, Luke F. Roberts,
Roland Haas, Christian Reisswig, Philipp M¨osta, Hannah Klion, and
Erik Schnetter. NEUTRINO-DRIVEN TURBULENT CONVECTION
AND STANDING ACCRETION SHOCK INSTABILITY IN THREEDIMENSIONAL CORE-COLLAPSE SUPERNOVAE. The Astrophysical
Journal, 808(1):70, jul 2015.
59
[27] V. Alan Kosteleck´y and Stuart Samuel. Self-maintained coherent oscillations
in dense neutrino gases. Physical Review D, 52(2):621–627, jul 1995.
[28] Y Yang and J P Kneller. Neutrino flavour evolution through fluctuating
matter. Journal of Physics G: Nuclear and Particle Physics, 45(4):045201,
mar 2018.
[29] Huaiyu Duan and Shashank Shalgar. Flavor instabilities in the neutrino line
model. Physics Letters B, 747:139–143, jul 2015.
[30] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, St´efan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, ˙Ilhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antˆonio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *