帳號:guest(3.16.218.226)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊孟哲
作者(外文):Yang, Meng-Zhe
論文名稱(中文):以JCMT BISTRO計畫的觀測結果探索銀河系中心磁場的樣貌
論文名稱(外文):The JCMT BISTRO Survey: Unveiling the Magnetic Fields around Galactic Center
指導教授(中文):賴詩萍
指導教授(外文):Lai, Shih-Ping
口試委員(中文):何英宏
湯雅雯
陳建州
口試委員(外文):Harsono, Daniel Santoso
Tang, Ya-Wen
Chen, Chian-Chou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:109025505
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:59
中文關鍵詞:恆星形成磁場紊流詹姆斯·克拉克·麥克斯韋望遠鏡BISTRO計畫
外文關鍵詞:Star formationMagnetic fieldturbulenceJames Clerk Maxwell TelescopeBISTRO Survey
相關次數:
  • 推薦推薦:0
  • 點閱點閱:164
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
我們展示了在BISTRO調查計畫中,利用裝設在JCMT望遠鏡上的SCUBA2相機與POL-2偏振儀對銀河系中心所作的450微米與850微米偏振觀測。這些數據提供我們在20公里每秒分子雲(20 km s−1 cloud)、50公里每秒分子雲( km s−1 cloud)與人馬座A*附近高解析度的照片(450微米觀測的解析度約為0.39秒差距,而850微米觀測的解析度約為0.59秒差距)。投影在天球平面上的磁場方向大致對應塵埃分布的結構,並且磁場方位角擾動的標準差約為7度。我們利用多重高斯曲線擬合區分出外圍物質結構與嵌入在內部的核心。根據450微米與850微米觀測數據推測出的整體磁場強度,最常見的數值約為200微高斯,並且在20公里每秒分子雲與50公里每秒分子雲的區域,我們發現外部磁場強度約為內部磁場強度的1.5倍。通過質量與磁通量的比率,在接近20公里每秒分子雲與50公里每秒分子雲的環境,將以重力作為主導,使得物質向內塌縮;反之,在其餘區域則以磁場作為主導,並且抵抗向內塌縮的趨勢。除了重力以外,藉由等離子體環境參數Beta值,顯示磁能密度遠高於熱能密度;再者,藉由阿爾文馬赫數能得知,湍流造成的影響也比磁場來的小。因此我們認為磁場在抑制銀河系中心恆星形成過程中扮演至關重要的角色。此外,藉由偏極化程度與輻射強度的冪次指數,不論在450微米或者850微米的數據都約為-0.4,表明在此區域中,塵埃顆粒的旋轉很好地與磁場對齊。
We present the 450um and 850um polarietric observations toward the galactic center, which are parts of the James Clerk Maxwell Telescope (JCMT) B-Fields In Star-Forming Region Observations (BISTRO) Survey using POL-2 polarimeter on Sub-millimetre Common-User Bolometer Array 2 (SCUBA-2) camera. These measurements provide us the high spatial resolution (∼0.39 pc at 450 µm and ∼0.59 pc at 850 µm) to probe the magnetic field in the vicinity of 20 km s−1 cloud, 50 km s−1 cloud and SgrA*. The inferred magnetic field orientation on plane-of sky is organized following the extension of dust structure, and the overall angle dispersion is ∼7 ◦ at both wavelengths. We utilize the multiple Gaussian fitting to separate the gas structures into the ambient material and the embedded cores, and estimate the plane-of-sky magnetic field strengths using the Davis-Chandrasekhar Fermi method. The most common magnetic field strength is ∼200µG for both 450 µm and 850 µm. Within the regions of 20 km s−1 cloud and 50 km s−1 cloud, the outer magnetic field strengths are roughly 1.5 times stronger than the inner magnetic field strengths. Based on mass-to-flux ratio, the environments closed to 20 km s−1 cloud and 50 km s−1 cloud are dominated by the gravity, while in the remaining area, the magnetic field is dominant. Apart from the gravity, the magnetic energy density is much stronger than the thermal energy density because of plasma beta β ≪ 1, and also more influential than turbulence with the Alfv´en Mach Number MA < 1. Therefore, we suggest the magnetic field plays the crucial role to suppress the star formation around the galactic center. Additionally, we find the polarization fraction is proportional to the intensity with power law index of −0.395 and −0.354 at 450 µm and 850 µm in high S/N limit, indicating the dust grains are well aligned with the magnetic fields.
Contents
Abstract (Chinese) I
Abstract II
Contents III
List of Figures V
List of Tables X
1 Introduction 1
1.1 Magnetic field and star formation . . . . . . . . . . . . . . . . . . . 1
1.2 Central-Molecular-Zone (CMZ) . . . . . . . . . . . . . . . . . . . . 1
1.3 Davis-Chandrasekhar-Fermi method . . . . . . . . . . . . . . . . . . 2
1.4 Grain alignment theory . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Observations 5
2.1 BISTRO Polarimetric Continuum data . . . . . . . . . . . . . . . . 5
2.2 CHIMPS 13CO J = 3 → 2 Emission . . . . . . . . . . . . . . . . . . 7
2.3 Herschel Hi-GAL data . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Results and Analysis 11
3.1 Magnetic Field Morphology . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Magnetic Field Strength . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Angular Dispersion around galactic center . . . . . . . . . . 16
3.2.2 Velocity Dispersion . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Volume Density . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 Magnetic Field strength . . . . . . . . . . . . . . . . . . . . 36
3.3 Dust Grain Alignment . . . . . . . . . . . . . . . . . . . . . . . . . 41
4 Discussion 44
4.1 Magnetic field vs. Gravity . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Magnetic field vs. Thermal energy . . . . . . . . . . . . . . . . . . . 47
4.3 Magnetic field vs. Turbulence . . . . . . . . . . . . . . . . . . . . . 47
5 Conclusion 51
Bibliography 53
Bibliography
[1] B. G. Andersson, A. Lazarian, and John E. Vaillancourt. Interstellar dust grain alignment. Annual Review of Astronomy and Astrophysics, 53(1):501– 539, 2015.
[2] A. T. Barnes, S. N. Longmore, C. Battersby, J. Bally, J. M.D. Kruijssen, J. M.D. Kruijssen, J. D. Henshaw, and D. L. Walker. Star formation rates and efficiencies in the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 469(2):2263–2285, 8 2017.
[3] D S Berry, T M Gledhill, J S Greaves, and T Jenness. POLPACK-An Imaging Polarimetry Reduction Package. 343, 2005.
[4] Telemachos Ch Mouschovias and Efthimios V Paleologou. THE EFFECT OF AMBIPOLAR DIFFUSION ON MAGNETIC BRAKING OF MOLECULAR CLOUD CORES: AN EXACT, TIME-DEPENDENT SOLUTION. 308:781– 790, 1986.
[5] S Chandrasekhar and E Fermi. MAGNETIC FIELDS IN SPIRAL ARMS. 114:1, 1951.
[6] Edward Chapin, Andrew G Gibb, Tim Jenness, David S Berry, Douglas Scott, and Remo Tilanus. Science & Technology Facilities Council Starlink SoftwareCollection Starlink User Note 258.3 SMURF-the Sub-Millimetre User Reduction Facility User’s Guide. 2013. 53
[7] Richard M. Crutcher. Magnetic fields in molecular clouds. 50:29–63, 9 2012.
[8] Richard M Crutcher, D J Nutter, D Ward-Thompson, and J M Kirk. SCUBA POLARIZATION MEASUREMENTS OF THE MAGNETIC FIELD STRENGTHS IN THE L183, L1544, AND L43 PRESTELLAR CORES.
[9] Jr. Davis, Leverett and Jesse L Greenstein. THE POLARIZATION OF STARLIGHT BY ALIGNED DUST GRAINS. Astrophysical Journal, vol. 114, p.206, page 35, 1951.
[10] J. T. Dempsey, P. Friberg, T. Jenness, R. P.J. Tilanus, H. S. Thomas, W. S. Holland, D. Bintley, D. S. Berry, E. L. Chapin, A. Chrysostomou, G. R. Davis, A. G. Gibb, H. Parsons, and E. I. Robson. SCUBA-2: On-sky calibration using submillimetre standard sources. Monthly Notices of the Royal Astronomical Society, 430(4):2534–2544, 2013.
[11] A Z Dolginov and I G Mytrophanov. ORIENTATION OF COSMIC DUST GRAINS. 1976.
[12] T Gold. THE ALIGNMENT OF GALACTIC DUST.
[13] W. A. Hiltner. Polarization of light from distant stars by interstellar medium. Science, 109(2825):165, 1949.
[14] T. J. Jones, M. Bagley, M. Krejny, B. G. Andersson, and P. Bastien. Grain alignment in starless cores. Astronomical Journal, 149(1), 1 2015.
[15] Jens Kauffmann. Column Densities and Masses from Dust Emission. 10 2005.
[16] J. M.Diederik Kruijssen, Steven N. Longmore, Bruce G. Elmegreen, Norman Murray, John Bally, Leonardo Testi, and Robert C. Kennicutt. What controls 54 star formation in the central 500 pc of the galaxy? Monthly Notices of the Royal Astronomical Society, 440(4):3370–3391, 2014.
[17] S. N. Longmore, J. Bally, L. Testi, C. R. Purcell, A. J. Walsh, E. Bressert, M. Pestalozzi, S. Molinari, J. Ott, L. Cortese, C. Battersby, N. Murray, E. Lee, J. M.D. Kruijssen, E. Schisano, and D. Elia. Variations in the Galactic star formation rate and density thresholds for star formation. Monthly Notices of the Royal Astronomical Society, 429(2):987–1000, 2013.
[18] Xing Lu, Yu Cheng, Adam Ginsburg, Steven N. Longmore, J. M. Diederik Kruijssen, Cara Battersby, Qizhou Zhang, and Daniel L. Walker. ALMA Observations of Massive Clouds in the Central Molecular Zone: Jeans Fragmentation and Cluster Formation. The Astrophysical Journal, 894(2):L14, 2020.
[19] Steve Mairs, Jessica T Dempsey, Graham S Bell, Harriet Parsons, Malcolm J Currie, Per Friberg, Xue-jian Jiang, Alexandra J Tetarenko, Dan Bintley, Jamie Cookson, Shaoliang Li, Mark G Rawlings, Jan Wouterloot, David Berry, Sarah Graves, Izumi Mizuno, Alexis Ann Acohido, Alyssa Clark, Jeff Cox, Miriam Fuchs, James Hoge, Johnathon Kemp, E Lee, Callie Matulonis, William Montgomerie, Kevin Silva, and Patrice Smith. A Decade of SCUBA2 : A Comprehensive Guide to Calibrating 450 µ m and 850 µ m Continuum Data at the JCMT. The Astronomical Journal, 162(5):191, 2021.
[20] K. A. Marsh, A. P. Whitworth, O. Lomax, S. E. Ragan, U. Becciani, L. Cambr´esy, A. Di Giorgio, D. Eden, D. Elia, P. Kacsuk, S. Molinari, P. Palmeirim, S. Pezzuto, N. Schneider, E. Sciacca, and F. Vitello. Multitemperature mapping of dust structures throughout the Galactic Plane using the PPMAP tool with Herschel Hi-GAL data. Monthly Notices of the Royal Astronomical Society, 471(3):2730–2742, 2017. 55
[21] L Mestel. Magnetic fields. 1985.
[22] S. Molinari, J. Bally, A. Noriega-Crespo, M. Compi`egne, J. P. Bernard, D. Paradis, P. Martin, L. Testi, M. Barlow, T. Moore, R. Plume, B. Swinyard, A. Zavagno, L. Calzoletti, A. M. Di Giorgio, D. Elia, F. Faustini, P. Natoli, M. Pestalozzi, S. Pezzuto, F. Piacentini, G. Polenta, D. Polychroni, E. Schisano, A. Traficante, M. Veneziani, C. Battersby, M. Burton, S. Carey, Y. Fukui, J. Z. Li, S. D. Lord, L. Morgan, F. Motte, F. Schuller, G. S. Stringfellow, J. C. Tan, M. A. Thompson, D. Ward-Thompson, G. White, and G. Umana. A 100pc elliptical and twisted ring of cold and dense molecular clouds revealed by herschel around the galactic center. Astrophysical Journal Letters, 735(2), 7 2011.
[23] L. Montier, S. Plaszczynski, F. Levrier, M. Tristram, D. Alina, I. Ristorcelli, J. P. Bernard, and V. Guillet. Polarization measurement analysis: II. Best estimators of polarization fraction and angle. Astronomy and Astrophysics, 574, 2 2015.
[24] Fumitaka Nakamura and Zhi-Yun Li. MAGNETICALLY REGULATED STAR FORMATION IN THREE DIMENSIONS: THE CASE OF THE TAURUS MOLECULAR CLOUD COMPLEX.
[25] Kate Pattle, Shih-Ping Lai, Tetsuo Hasegawa, Jia-Wei Wang, Ray S. Furuya, Derek Ward-Thompson, Pierre Bastien, Simon Coud´e, Chakali Eswaraiah, Lapo Fanciullo, James di Francesco, Thiem Hoang, Gwanjeong Kim, Woojin Kwon, Chang Won Lee, Sheng-Yuan Liu, Tie Liu, Masafumi Matsumura, Takashi Onaka, Sarah Sadavoy, and Archana Soam. JCMT BISTRO Survey Observations of the Ophiuchus Molecular Cloud: Dust Grain Alignment Properties Inferred Using a Ricean Noise Model. The Astrophysical Journal, 880(1):27, 7 2019. 56
[26] Kate Pattle, Derek Ward-Thompson, David Berry, Jennifer Hatchell, HueiRu Chen, Andy Pon, Patrick M. Koch, Woojin Kwon, Jongsoo Kim, Pierre Bastien, Jungyeon Cho, Simon Coud´e, James Di Francesco, Gary Fuller, Ray S. Furuya, Sarah F. Graves, Doug Johnstone, Jason Kirk, Jungmi Kwon, Chang Won Lee, Brenda C. Matthews, Joseph C. Mottram, Harriet Parsons, Sarah Sadavoy, Hiroko Shinnaga, Archana Soam, Tetsuo Hasegawa, Shih-Ping Lai, Keping Qiu, and Per Friberg. The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament. The Astrophysical Journal, 846(2):122, 2017.
[27] M. J. Reid, K. M. Menten, A. Brunthaler, X. W. Zheng, T. M. Dame, Y. Xu, Y. Wu, B. Zhang, A. Sanna, M. Sato, K. Hachisuka, Y. K. Choi, K. Immer, L. Moscadelli, K. L.J. Rygl, and A. Bartkiewicz. Trigonometric parallaxes of high mass star forming regions: The structure and kinematics of the milky way. Astrophysical Journal, 783(2), 3 2014.
[28] A. J. Rigby, T. J.T. Moore, R. Plume, D. J. Eden, J. S. Urquhart, M. A. Thompson, J. C. Mottram, C. M. Brunt, H. M. Butner, J. T. Dempsey, S. J. Gibson, J. Hatchell, T. Jenness, N. Kuno, S. N. Longmore, L. K. Morgan, D. Polychroni, H. Thomas, G. J. White, and M. Zhu. CHIMPS: The 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey. Monthly Notices of the Royal Astronomical Society, 456(3):2885–2899, 3 2016.
[29] ’ See For Instance and W F Swann. On the Origin of Cosmic Rays. 43:217, 1933.
[30] Stewart B. G. Simmons, J. F. L. Point and interval estimation of the true unbiased degree of linear polarization in the presence of low signal-to-noise ratios. Astronomy and Astrophysics, 1 1985. 57
[31] Lyman Spitzer and John W Tukey. A THEORY OF INTERSTELLAR POLARIZATION*. 109(5):405, 1949.
[32] Le Ngoc Tram, Lars Bonne, Yue Hu, Enrique Lopez-Rodriguez, Jordan A. Guerra, Pierre Lesaffre, Antoine Gusdorf, Thiem Hoang, Min-Young Lee, Alex Lazarian, B-G Andersson, Simon Coude, Archana Soam, William D. Vacca, Hyeseung Lee, and Michael Gordon. SOFIA observations of 30 Doradus: II – Magnetic fields and large scale gas kinematics. 5 2022.
[33] Jia-Wei Wang, Shih-Ping Lai, Chakali Eswaraiah, Kate Pattle, James Di Francesco, Doug Johnstone, Patrick M. Koch, Tie Liu, Motohide Tamura, Ray S. Furuya, Takashi Onaka, Derek Ward-Thompson, Archana Soam, KeeTae Kim, Chang Won Lee, Chin-Fei Lee, Steve Mairs, Doris Arzoumanian, Gwanjeong Kim, Thiem Hoang, Jihye Hwang, Sheng-Yuan Liu, David Berry, Pierre Bastien, Tetsuo Hasegawa, Woojin Kwon, Keping Qiu, Philippe Andr´e, Yusuke Aso, Do-Young Byun, Huei-Ru Chen, Michael C. Chen, Wen Ping Chen, Tao-Chung Ching, Jungyeon Cho, Minho Choi, Antonio Chrysostomou, Eun Jung Chung, Simon Coud´e, Yasuo Doi, C. Darren Dowell, Emily Drabek-Maunder, Hao-Yuan Duan, Stewart P. S. Eyres, Sam Falle, Lapo Fanciullo, Jason Fiege, Erica Franzmann, Per Friberg, Rachel K. Friesen, Gary Fuller, Tim Gledhill, Sarah F. Graves, Jane S. Greaves, Matt J. Griffin, Qilao Gu, Ilseung Han, Jennifer Hatchell, Saeko S. Hayashi, Wayne Holland, Martin Houde, Tsuyoshi Inoue, Shu-ichiro Inutsuka, Kazunari Iwasaki, IlGyo Jeong, Yoshihiro Kanamori, Ji hyun Kang, Miju Kang, Sung-ju Kang, Akimasa Kataoka, Koji S. Kawabata, Francisca Kemper, Jongsoo Kim, Kyoung Hee Kim, Mi-Ryang Kim, Shinyoung Kim, Jason M. Kirk, Masato I. N. Kobayashi, Vera Konyves, Jungmi Kwon, Kevin M. Lacaille, Hyeseung Lee, Jeong-Eun Lee, Sang-Sung Lee, Yong-Hee Lee, Dalei Li, Di Li,58 Hua-bai Li, Hong-Li Liu, Junhao Liu, A-Ran Lyo, Masafumi Matsumura, Brenda C. Matthews, Gerald H. Moriarty-Schieven, Tetsuya Nagata, Fumitaka Nakamura, Hiroyuki Nakanishi, Nagayoshi Ohashi, Geumsook Park, Harriet Parsons, Enzo Pascale, Nicolas Peretto, Andy Pon, Tae-Soo Pyo, Lei Qian, Ramprasad Rao, Mark G. Rawlings, Brendan Retter, John Richer, Andrew Rigby, Jean-Fran¸cois Robitaille, Sarah Sadavoy, Hiro Saito, Giorgio Savini, Anna M. M. Scaife, Masumichi Seta, Hiroko Shinnaga, Ya-Wen Tang, Kohji Tomisaka, Yusuke Tsukamoto, Sven van Loo, Hongchi Wang, Anthony P. Whitworth, Hsi-Wei Yen, Hyunju Yoo, Jinghua Yuan, HyeongSik Yun, Tetsuya Zenko, Chuan-Peng Zhang, Guoyin Zhang, Ya-Peng Zhang, Jianjun Zhou, and Lei Zhu. JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146. The Astrophysical Journal, 876(1):42, 5 2019.
[34] J F C Wardle and P P Kronberg. THE LINEAR POLARIZATION OF QUASI-STELLAR RADIO SOURCES AT 3.71 AND 11.1 CENTIMETERS. 194:249–255, 1974.
[35] D C B Whittet, J H Hough, A Lazarian, and Thiem Hoang. THE EFFICIENCY OF GRAIN ALIGNMENT IN DENSE INTERSTELLAR CLOUDS: A REASSESSMENT OF CONSTRAINTS FROM NEARINFRARED POLARIZATION. 5
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *