帳號:guest(3.145.82.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鍾昀欣
作者(外文):Chung, Yun-Hsin
論文名稱(中文):使用康普頓偏光儀 (Compol) 量測天鵝座X-1及蟹狀星雲軟伽瑪射線的偏極化率
論文名稱(外文):Polarization measurement of soft gamma-rays from Cygnus X-1 and the Crab using Compton Polarimeter (Compol)
指導教授(中文):張祥光
指導教授(外文):Chang, Hsiang-Kuang
口試委員(中文):周翊
楊湘怡
口試委員(外文):Chou, Yi
Yang, Hsiang-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:109025502
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:80
中文關鍵詞:康普頓望遠鏡伽瑪射線偏極天鵝座X-1蟹狀星雲立方衛星
外文關鍵詞:Compton telescopegamma-rayspolarizationCygnus X-1CrabCubeSat
相關次數:
  • 推薦推薦:0
  • 點閱點閱:41
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有關天鵝座X-1及蟹狀星雲於X射線/伽瑪射線波段的輻射機制,可以透過量測其偏極狀態來進一步了解。本篇論文中,我們使用搭載於立方衛星上的康普頓偏光儀 (Compol) 來觀測上述兩個目標的偏極性。並使用 MEGAlib 進行模擬分析。與先前的探討不同的是,此處我們組合四個探測器單元作為新的模型,相對於過去增加約四倍的有效面積。我們將模型放置於低地軌道並以正軸方向觀測天鵝座 X-1 一千萬秒,其可量測最小偏極值 (MDP) 在 160-250 keV 波段中可低至 12.4 %、250-400keV 可低至 12.5 % 及 400-2000 keV 可到 27.6 %。此最小偏極值結果比過去利用 INTEGRAL/IBIS 或 INTEGRAL/SPI 研究的偏極值都還要低,代表 Compol 足夠靈敏而得以量測在軟伽瑪射線波段的偏極資訊。
我們也對蟹狀星雲做同樣的觀測,並得到比觀測天鵝座 X-1 還低的MDP。在160-250 keV 範圍量到 5.8 %、250-400 keV 到 6.4 % 而 400-2000 keV 到 11.3 %。這個最小偏極值也低於其他X射線/伽瑪射線儀器所測量到的偏極值,因此Compol可以提供在項位積分(包含脈衝星及其脈衝星星雲)下的蟹狀星雲在軟伽瑪射線的偏極資訊。此外,我們對蟹狀星雲進行相位分辨並測量不同相位的最小偏極值。透過估計不同相位的光通量可以計算出在離脈相位的最小偏極值在 160-250 keV 可低至 8.35 %、250-400 keV 至 11.56 % 而 400-2000 keV 至 24.16 %。並且,此結果可以驗證由離脈相位的偏極值及偏極角度是否會隨著相位改變 (由AstroSat CZTI測量到的結果)。而在第一峰值及第二峰值相位,我們估算的最小偏極值在兩個較低的波段中,已經到達 PoGO+ 及 POLAR 兩儀器所量測到的偏極值上限。
Measuring the polarization state of Cygnus X-1 and Crab in the X-ray/gamma-ray band is of great importance in understanding their emission mechanism. In this thesis, we propose to use a small Compton polarimeter (Compol) on board a Cubesat to observe the gamma-ray polarization of Cygnus X-1 and Crab. Compared to previous results in Yang et al. 2020 and Hsiang (2021), we increase our detector units by a factor of 4, gaining a larger effective area. Therefore, we estimate the improvement of the polarization measurement with a four times larger detector effective area by running simulations with MEGAlib package. Results show that a 10-Ms, on-axis observation in low-Earth orbit (LEO), the minimum detectable polarization (MDP) for Cygnus X-1 can reach to about 12.4 % in 160-250 keV, 12.5 % in 250-400 keV and about 27.6 % in 400-2000 keV. The MDPs we derived are lower than the polarization degree measured in previous studies (e.g. INTEGRAL/IBIS and INTEGRAL/SPI), which means this instrument is sensitive enough to yield useful polarization information in the gamma-ray regime.
We performed the same procedure to study the MDP of the phase-integrated Crab, and found that we can reach a lower MDP than that of Cygnus X-1. The MDP in 160-250 keV can reach 5.8 %, 6.4 % in 250-400 keV, and 11.3 % in 400-2000 keV. These results are also lower than the polarization degrees reported by those measured by other X-ray/gamma-ray instruments, therefore we are able to measure the polarization degree of the phase-integrated Crab using Compol. Moreover, we evaluate the polarization information on the phase-resolved Crab. Estimations on the flux in different phases show that the MDP in off-pulse phase can reach to about 8.35 % in 160-250 keV, 11.56 % in 250-400 keV, and 24.16 % in 400-2000 keV. We can further investigate whether there exist a variation in polarization angle and polarization degree reported by AstroSat CZTI in the off-pulse phase as well. For P1 phase and P2 phase, the estimated MDP in lower energy bands have reached the upper limit that recent studies from PoGO+ and POLAR measured.
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Compton Polarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Instrument Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Simulation and Data Analysis . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Minimum Detectable Polarization of Cygnus X-1 with Compol 12
2.1 Introduction of Cygnus X-1 . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Input Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 MDP of Cygnus X-1 using Compol . . . . . . . . . . . . . . . . . . . 18

3 Minimum Detectable Polarization of Crab with Compol 20
3.1 Introduction of the Crab . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Input Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Data Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 MDP of the Crab using Compol . . . . . . . . . . . . . . . . . . . . . 23

4 Discussion 25
4.1 Comparison on different model designs . . . . . . . . . . . . . . . . . 25
4.2 The phase-resolved polarization measurement of the Crab . . . . . . . . 31
4.3 Polarization variation of the Crab in off-pulse phase . . . . . . . . . . . 36

5 Summary 40

A Detailed Information in deriving the MDP 42
A.1 MDP information of 4 detector-unit model described in Section 1.3 for CygnusX-1................................ 43
A.2 MDP information of 4 detector-unit model described in Section 1.3 for theCrab.................................. 47
A.3 MDP Information of 1 detector-unit model described in Section 4.1 for CygnusX-1................................ 51
A.4 MDP Information of 1 detector-unit model described in Section 4.1 for theCrab.................................. 63
[1] J. Arons. Pair creation above pulsar polar caps : geometrical structure and energetics of slot gaps. Astrophysical Journal, 266:215–241, March 1983.
[2] Marion Cadolle Bel, M. Rib ́o, J. Rodriguez, S. Chaty, S. Corbel, A. Goldwurm, and J. Malzac. Broad-band spectral changes of the microquasars Cygnus X-1 and SWIFT J1753.5-0127. In VI Microquasar Workshop: Microquasars and Beyond, page 3.1, January 2006.
[3] T. Chattopadhyay, S. V. Vadawale, A. R. Rao, S. Sreekumar, and D. Bhattacharya. Prospects of hard X-ray polarimetry with Astrosat-CZTI. Experimental Astronomy, 373):555–577, November 2014.
[4] M. Chauvin, H. G. Flor ́en, M. Friis, M. Jackson, T. Kamae, J. Kataoka, T. Kawano, M. Kiss, V. Mikhalev, T. Mizuno, N. Ohashi, T. Stana, H. Tajima, H. Takahashi, N. Uchida, and M. Pearce. Shedding new light on the Crab with polarized X-rays. Scientific Reports, 7:7816, August 2017.
[5] M. Chauvin, H. G. Flor ́en, M. Friis, M. Jackson, T. Kamae, J. Kataoka, T. Kawano, M. Kiss, V. Mikhalev, T. Mizuno, N. Ohashi, T. Stana, H. Tajima, H. Takahashi, N. Uchida, and M. Pearce. Accretion geometry of the black-hole binary Cygnus X-1 from X-ray polarimetry. Nature Astronomy, 2:652–655, June 2018.
[6] M. Chauvin, H. G. Flor ́en, M. Friis, M. Jackson, T. Kamae, J. Kataoka, T. Kawano, M. Kiss, V. Mikhalev, T. Mizuno, H. Tajima, H. Takahashi, N. Uchida, and M. Pearce. The PoGO+ view on Crab off-pulse hard X-ray polarization. Monthly Notices of the RAS, 477(1):L45–L49, June 2018.
[7] M. Chauvin, J. P. Roques, D. J. Clark, and E. Jourdain. Polarimetry in the Hard
X-Ray Domain with INTEGRAL SPI. Astrophysical Journal, 769(2):137, June 2013.
[8] K. S. Cheng, C. Ho, and M. Ruderman. Energetic Radiation from Rapidly Spinning Pulsars. I. Outer Magnetosphere Gaps. Astrophysical Journal, 300:500, January 1986.
[9] A. J. Dean, D. J. Clark, J. B. Stephen, V. A. McBride, L. Bassani, A. Bazzano, A. J. Bird, A. B. Hill, S. E. Shaw, and P. Ubertini. Polarized gamma-ray emission from the crab. Science, 321(5893):1183–1185, 2008.
[10] H. Feng, H. Li, X. Long, R. Bellazzini, E. Costa, Q. Wu, J. Huang, W. Jiang, M. Minuti, W. Wang, R. Xu, D. Yang, L. Baldini, S. Citraro, H. Nasimi, P. Soffitta, F. Muleri, A. Jung, J. o. Yu, G. Jin, M. Zeng, P. An, A. r. Brez, L. Latronico, C. Sgro, G. Spandre, and M. Pinchera. Re-detection and a possible time variation
of soft X-ray polarization from the Crab. Nature Astronomy, 4:511–516, May 2020.
[11] M. Forot, P. Laurent, I. A. Grenier, C. Gouiff`es, and F. Lebrun. Polarization of the Crab Pulsar and Nebula as Observed by the INTEGRAL/IBIS Telescope. Astrophysical Journal, Letters, 688(1):L29, November 2008.
[12] J. Y. Hsiang. Measuring gamma-ray polarization from Cygnus X-1 and the Crab using Compton Polarimeter (Compol). Master thesis, Institute of Astronomy, National Tsing Hus University, 2021.
[13] J. Y. Yeom, S. Yamamoto, S. E. Derenzo, V. C. Spanoudaki, K. Kamada, T. Endo,
and C. S. Levin. First performance results of ce:gagg scintillation crystals with silicon photomultipliers. IEEE Transactions on Nuclear Science, 60(2):988–992,
2013.
[14] E. Jourdain and J. P. Roques. 5 years of survey on the Crab Nebula with SPI/INTEGRAL. In The 7th INTEGRAL Workshop, page 143, January 2008.
[15] E. Jourdain and J. P. Roques. 2003-2018 Monitoring of the Crab Nebula Polarization in Hard X-Rays with INTEGRAL SPI. Astrophysical Journal, 882(2):129, September 2019.
[16] E. Jourdain, J. P. Roques, M. Chauvin, and D. J. Clark. Separation of two contributions to the high energy emission of cygnus x-1: Polarization measurements with integral spi. The Astrophysical Journal, 761(1):27, nov 2012.
[17] O. Klein and T. Nishina. ̈Uber die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Zeitschrift fur Physik, 52(11-12):853–868, November 1929.
[18] L. Kuiper, W. Hermsen, G. Cusumano, R. Diehl, V. Sch ̈onfelder, A. Strong, K. Bennett, and M. L. McConnell. The Crab pulsar in the 0.75-30 MeV range as seen by CGRO COMPTEL. A coherent high-energy picture from soft X-rays up to high-energy gamma-rays. Astronomy and Astrophysics, 378:918–935, November 2001.
[19] P. Laurent, J. Rodriguez, J. Wilms, M. Cadolle Bel, K. Pottschmidt, and V. Grinberg. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1. Science, 332(6028):438, April 2011.
[20] H. C. Li, N. Produit, S. N. Zhang, M. Kole, J. C. Sun, M. Y. Ge, N. De Angelis, J. Hulsman, Z. H. Li, L. M. Song, T. Tymieniecka, B. B. Wu, X. Wu, Y. H. Wang, S. L. Xiong, Y. J. Zhang, Y. Zhao, and S. J. Zheng. Gamma-ray polarimetry of the Crab pulsar observed by POLAR. Monthly Notices of the RAS, 512(2):2827–2840,
May 2022.
[21] K. S. Long, G. A. Chanan, and R. Novick. The X-ray polarization of the CYG
sources. Astrophysical Journal, 238:710–716, June 1980.
[22] A. W. Lowell, S. E Boggs, C. L. Chiu, C. A. Kierans, C. Sleator, J. A. Tomsick,
A. C. Zoglauer, H.-K. Chang, C.-H. Tseng, C.-Y. Yang, P. Jean, P. von Ballmoos,
C.-H. Lin, and M. Amman. Maximum likelihood compton polarimetry with the
compton spectrometer and imager. The Astrophysical Journal, 848(2):120, oct
2017.
[23] M. L. McConnell, A. A. Zdziarski, K. Bennett, H. Bloemen, W. Collmar,
W. Hermsen, L. Kuiper, W. Paciesas, B. F. Phlips, J. Poutanen, J. M. Ryan,
V. Sch ̈onfelder, H. Steinle, and A. W. Strong. The Soft Gamma-Ray Spectral
Variability of Cygnus X-1. Astrophysical Journal, 572(2):984–995, June 2002.
[24] James C. A. Miller-Jones, Arash Bahramian, Jerome A. Orosz, Ilya Mandel, Li-
jun Gou, Thomas J. Maccarone, Coenraad J. Neijssel, Xueshan Zhao, Janusz
Zi ́ołkowski, Mark J. Reid, Phil Uttley, Xueying Zheng, Do-Young Byun, Richard
Dodson, Victoria Grinberg, Taehyun Jung, Jeong-Sook Kim, Benito Marcote, Sera
Markoff, Mar ́ıa J. Rioja, Anthony P. Rushton, David M. Russell, Gregory R.
Sivakoff, Alexandra J. Tetarenko, Valeriu Tudose, and Joern Wilms. Cygnus X-1
contains a 21-solar mass black hole—Implications for massive star winds. Science,
371(6533):1046–1049, March 2021.
[25] D. Petry, V. Beckmann, H. Halloin, and A. Strong. Soft gamma-ray sources detected by INTEGRAL. Astronomy and Astrophysics, 507(1):549–571, November 2009.
[26] G. J. Qiao, K. J. Lee, H. G. Wang, R. X. Xu, and J. L. Han. The Inner Annular Gap for Pulsar Radiation: γ-Ray and Radio Emission. Astrophysical Journal, Letters,
606(1):L49–L52, May 2004.
[27] G. E. Romero, F. L. Vieyro, and S. Chaty. Coronal origin of the polarization of
the high-energy emission of Cygnus X-1. Astronomy and Astrophysics, 562:L7, February 2014.
[28] M. A. Ruderman and P. G. Sutherland. Theory of pulsars: polar gaps, sparks, and coherent microwave radiation. Astrophysical Journal, 196:51–72, February 1975.
[29] S. V. Vadawale, T. Chattopadhyay, N. P. S. Mithun, A. R. Rao, D. Bhattacharya, A. Vibhute, V. B. Bhalerao, G. C. Dewangan, R. Misra, B. Paul, A. Basu, B. C. Joshi, S. Sreekumar, E. Samuel, P. Priya, P. Vinod, and S. Seetha. Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager. Nature Astronomy, 2:50–55, November 2018.
[30] M. C. Weisskopf, G. G. Cohen, H. L. Kestenbaum, K. S. Long, R. Novick, and R. S. Wolff. Measurement of the X-ray polarization of the Crab nebula. Astrophysical Journal, Letters, 208:L125–L128, September 1976.
[31] M. C. Weisskopf, R. F. Elsner, and S. L. O’Dell. On understanding the figures of merit for detection and measurement of x-ray polarization. Proc. SPIE Int. Soc. Opt. Eng., 7732:77320E, 2010.
[32] M. C. Weisskopf, E. H. Silver, H. L. Kestenbaum, K. S. Long, and R. Novick. A precision measurement of the X-ray polarization of the Crab Nebula without pulsar contamination. Astrophysical Journal, Letters, 220:L117–L121, March 1978.
[33] C. Y. Yang, Y. C. Chang, H. H. Liang, C. Y. Chu, J. Y. Hsiang, J. L. Chiu, C. H. Lin, P. Laurent, J. Rodriguez, and H. K. Chang. Feasibility of observing gamma-ray polarization from cygnus x-1 using a CubeSat. The Astronomical Journal,
160(1):54, jul 2020.
[34] M. Yoneyama, J. Kataoka, M. Arimoto, T. Masuda, M. Yoshino, K. Kamada, A. Yoshikawa, H. Sato, and Y. Usuki. Evaluation of GAGG:Ce scintillators for future space applications. Journal of Instrumentation, 13(2):P02023, February 2018.
[35] A. Zogluar. First light for the next generation of compton and pair telescopes. Doctoral thesis, Technische Universit ̈at M ̈unchen, 2005.
[36] A. Zogluar, R. Andritschke, and F. Schopper. Megalib – the medium energy gamma-ray astronomy library. New Astronomy Reviews - NEW ASTRON REV, 50:629–632, 10 2006.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *