|
References [1] Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (B. Petrov and F. Csaki, eds.) 267-281. Akedemiai Kiado,16 Budapest. [2] An, H. Z. and Chen, Z. G. (1982) On convergence of LAD estimates in autoregression with infinite variance. J. Multiv. Anal., 12, 335-345. [3] Knight, K. (1989) Consistency of Akaike's information criterion for infinite variance autoregressive processes. The Annals of Statistics. 17, 824-840. [4] Davis R. A., Knight, K. and Liu, J. (1992) M-estimation for autoregressions with infinite variance. Stoch. Processes Appl., 40, 145-180. [5] Feller, W. (1971) An Introduction to Probability Theory and its Applications, Vol. 2, Second ed., Wiley, New York. [6] Gross, S. and Steiger, W. L. (1979) Least absolute deviation estimates in autoregression with infinite variance. J. Appl. Probab., 16, 104-116. [7] Cline, D. B. H. (1983) Estimation and linear prediction for regression, autoregression and ARMA with infinite variance data. Ph.D. Dissertation. Department of Statistics, Colorado State University, Fort Collins, Colorado. [8] Deheuvels, P., Haeusler, E., and Mason, D. (1988) Almost sure convergence of the Hill estimator. Math. Proc. Cambridge Philos. Soc., 104, 371-381. [9] Nelder, John A.; R. Mead (1965). A simplex method for function minimization. Computer Journal. 7, 308-313. |