帳號:guest(18.191.30.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱楷涵
作者(外文):Chiu, Kai-Han
論文名稱(中文):使用絕對值的自回歸模型的模型選擇
論文名稱(外文):Information Criterion for Infinite Variance Autoregressive Models with Least Absolute Deviation Estimation
指導教授(中文):銀慶剛
指導教授(外文):Ing, Ching-Kang
口試委員(中文):冼芻蕘
俞淑惠
口試委員(外文):Sin, Chor-Yiu
Yu, Shu-Hui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:統計學研究所
學號:109024508
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:22
中文關鍵詞:絕對值自回歸模型模型選擇
外文關鍵詞:Information criterionLeast deviation estimationAutoregressive modelStable distribution
相關次數:
  • 推薦推薦:0
  • 點閱點閱:213
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
假設Xt 是一個p 維度的自回歸模型,而他們的隨機項則滿足穩定分布的條件。
我們的目的是透過訊息量準則選擇p,不同於傳統方差的方法,我們這邊選擇用絕對值得方法來選取^p,最後我們證明當隨機項滿足他的穩定分布的係數α介於1到2之間的時候,我們的估計值^p會強收斂到真實的p值。
Suppose that Xt is a p-th order autoregressive process whose innovation follows a stable distribution. Our purpose is to choose p via an information criterion. Instead of the conventional least squares estimate, our estimate, ^p, of p is based on the least absolute
deviation. We prove that ^p is strongly consistent when the innovation is stable, with index 1 < α < 2.
Contents
摘要i
Abstract ii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .. . . .1
2 Background Knowledge . .. . . . . . . . . . . . . . . . .. .. . . .2
2.1 Stable distribution . . . .. . . . . . . . . . . . . . . . . . . 2
2.2 LAD estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Theoretical results. . . . . . . . . . . . . . . . . . . . . . . . 4
4 Simulation . . . . . . . . . . . . . . . . . . . . . .. . . .. . . 9
5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . .. . .21

References
[1] Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (B. Petrov and F. Csaki, eds.) 267-281. Akedemiai Kiado,16 Budapest.
[2] An, H. Z. and Chen, Z. G. (1982) On convergence of LAD estimates in autoregression with infinite variance.
J. Multiv. Anal., 12, 335-345.
[3] Knight, K. (1989) Consistency of Akaike's information criterion for infinite variance autoregressive processes. The Annals of Statistics. 17, 824-840.
[4] Davis R. A., Knight, K. and Liu, J. (1992) M-estimation for autoregressions with infinite variance. Stoch. Processes Appl., 40, 145-180.
[5] Feller, W. (1971) An Introduction to Probability Theory and its Applications, Vol. 2, Second ed., Wiley, New York.
[6] Gross, S. and Steiger, W. L. (1979) Least absolute deviation estimates in autoregression with infinite variance. J. Appl. Probab., 16, 104-116.
[7] Cline, D. B. H. (1983) Estimation and linear prediction for regression, autoregression and ARMA with infinite variance data. Ph.D. Dissertation. Department of Statistics, Colorado State University, Fort Collins, Colorado.
[8] Deheuvels, P., Haeusler, E., and Mason, D. (1988) Almost sure convergence of the Hill estimator. Math. Proc. Cambridge Philos. Soc., 104, 371-381.
[9] Nelder, John A.; R. Mead (1965). A simplex method for function minimization. Computer Journal. 7, 308-313.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *