|
Gombay, E. (2003). Sequential change-point detection and estimation. Sequential Analysis, 22(3):203–222. Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction, volume 2. Springer. Hawkins, D. M., Qiu, P., and Kang, C. W. (2003). The changepoint model for statistical process control. Journal of Quality Technology, 35(4):355–366. Hawkins, D. M. and Zamba, K. (2005a). A change-point model for a shift in variance. Journal of Quality Technology, 37(1):21–31. Hawkins, D. M. and Zamba, K. (2005b). Statistical process control for shifts in mean or variance using a changepoint formulation. Technometrics, 47(2):164–173. Hinkley, D. V. (1970). Inference about the change-point in a sequence of random variables. Biometrika, 57(3):477–488. Jones, L. A., Champ, C. W., and Rigdon, S. E. (2001). The performance of exponentially weighted moving average charts with estimated parameters. Technometrics, 43(2):156–167. Kang, L. and Albin, S. L. (2000). On-line monitoring when the process yields a linear profile. Journal of Quality Technology, 32(4):418–426. Kazemzadeh, R. B., Noorossana, R., and Amiri, A. (2008). Phase I monitoring of polynomial profiles. Communications in Statistics —Theory and Methods, 37(10):1671–1686. Kim, K., Mahmoud, M. A., and Woodall, W. H. (2003). On the monitoring of linear profiles. Journal of Quality Technology, 35(3):317–328. Mahmoud, M. A., Parker, P. A., Woodall, W. H., and Hawkins, D. M. (2007). A change point method for linear profile data. Quality and Reliability Engineering International, 23(2):247–268. Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2):100–115. Pignatiello Jr, J. J. and Samuel, T. R. (2001). Estimation of the change point of a normal process mean in spc applications. Journal of Quality Technology, 33(1):82–95. Roberts, S. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3):239–250. Smith, A. F. (1975). A bayesian approach to inference about a change-point in a sequence of random variables. Biometrika, 62(2):407–416. Sullivan, J. H. and Woodall, W. H. (2000). Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations. IIE Transactions, 32(6):537–549. Worsley, K. (1983). The power of likelihood ratio and cumulative sum tests for a change in a binomial probability. Biometrika, 70(2):455–464. Yao, Y.-C. (1987). Approximating the distribution of the maximum likelihood estimate of the change-point in a sequence of independent random variables. The Annals of Statistics, pages 1321–1328. Zamba, K. and Hawkins, D. M. (2006). A multivariate change-point model for statistical process control. Technometrics, 48(4):539–549. Zamba, K. and Hawkins, D. M. (2009). A multivariate change-point model for change in mean vector and/or covariance structure. Journal of Quality Technology, 41(3):285–303. Zhou, C., Zou, C., Zhang, Y., and Wang, Z. (2009). Nonparametric control chart based on change-point model. Statistical Papers, 50(1):13–28. Zou, C., Zhang, Y., and Wang, Z. (2006). A control chart based on a change-point model for monitoring linear profiles. IIE Transactions, 38(12):1093–1103. |